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Eine Einführung in die physikalischen Konzepte.
(8. Auflage)
c©Springer 1993, 1994, 1995, 1997, 1999, 2004, 2006 und 2008

ISBN: 978-3-540-79367-0 e-ISBN: 978-3-540-79368-7

Library of Congress Control Number: 2008928569

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Jürgen Sawinski, Heidelberg

Cover design: WMXDesign, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Preface to the Sixth Edition

The original chapters on deep inelastic scattering were formulated in 1993.
Since this time a large amount of new experimental data have been obtained
at the Electron-Proton Collider HERA at DESY in Hamburg. In summer
of 2007 the Collider was turned off. The chapters 7 and 8 were partially
rewritten as to include the most spectacular new results on deep inelastic
scattering.

I would like to thank Tina Pollmann for preparing the figures and Jürgen
Sawinski for the formatting of the Sixth Edition.

Heidelberg, February 2008 Bogdan Povh



Preface to the Fourth and the Fifth Edition

In the last two editions we included new results on the neutrino oscillations
as evidence for a non-vanishing mass of the neutrinos.

In the present edition we have rewritten the chapter on “Phenomenology
of the Weak Interaction” (Chapter 10) in order to give a coherent presentation
of the neutrino properties. Furthermore, we extended the chapter on “Nuclear
Thermodynamics” (Chapter 19).

Heidelberg, July 2006 Bogdan Povh



Preface to the First Edition

The aim of Particles and Nuclei is to give a unified description of
nuclear and particle physics because the experiments which have uncovered
the substructure of atomic nuclei and nucleons are conceptually similar. With
the progress of experimental and theoretical methods, atoms, nuclei, nucleons,
and finally quarks have been analysed during the course of this century. The
intuitive assumption that our world is composed of a few constituents — an
idea which seems attractive, but could not be taken for granted — appears
to be confirmed. Moreover, the interactions between these constituents of
matter can be formulated elegantly, and are well understood conceptionally,
within the so-called “standard model”.

Once we have arrived at this underlying theory we are immediately faced
with the question of how the complex structures around us are produced by it.
On the way from elementary particles to nucleons and nuclei we learn that the
“fundamental” laws of the interaction between elementary particles are less
and less recognisable in composite systems because many-body interactions
cause greater and greater complexity for larger systems.

This book is therefore divided into two parts. In the first part we deal
with the reduction of matter in all its complication to a few elementary con-
stituents and interactions, while the second part is devoted to the composition
of hadrons and nuclei from their constituents.

We put special emphasis on the description of the experimental concepts
but we mostly refrain from explaining technical details. The appendix con-
tains a short description of the principles of accelerators and detectors. The
exercises predominantly aim at giving the students a feeling for the sizes of
the phenomena of nuclear and particle physics.

Wherever possible, we refer to the similarities between atoms, nuclei, and
hadrons, because applying analogies has not only turned out to be a very
effective research tool but is also very helpful for understanding the character
of the underlying physics.

We have aimed at a concise description but have taken care that all the
fundamental concepts are clearly described. Regarding our selection of top-
ics, we were guided by pedagogical considerations. This is why we describe
experiments which — from today’s point of view — can be interpreted in a



VIII Preface

straightforward way. Many historically significant experiments, whose results
can nowadays be much more simply obtained, were deliberately omitted.

Particles and Nuclei (Teilchen und Kerne) is based on lectures on
nuclear and particle physics given at the University of Heidelberg to students
in their 6th semester and conveys the fundamental knowledge in this area,
which is required of a student majoring in physics. On traditional grounds
these lectures, and therefore this book, strongly emphasise the physical con-
cepts.

We are particularly grateful to J. Hüfner (Heidelberg) and M. Rosina
(Ljubljana) for their valuable contributions to the nuclear physics part of the
book. We would like to thank D. Dubbers (Heidelberg), A. Fäßler (Tübingen),
G. Garvey (Los Alamos), H. Koch (Bochum), K. Königsmann (Freiburg),
U. Lynen (GSI Darmstadt), G. Mairle (Mannheim), O. Nachtmann (Hei-
delberg), H. J. Pirner (Heidelberg), B. Stech (Heidelberg), and Th. Walcher
(Mainz) for their critical reading and helpful comments on some sections.
Many students who attended our lecture in the 1991 and 1992 summer
semesters helped us through their criticism to correct mistakes and improve
unclear passages. We owe special thanks to M. Beck, Ch. Büscher, S. Fabian,
Th. Haller, A. Laser, A. Mücklich, W. Wander, and E. Wittmann.

M. Lavelle (Barcelona) has translated the major part of the book and put
it in the present linguistic form. We much appreciated his close collaboration
with us. The English translation of this book was started by H. Hahn and
M. Moinester (Tel Aviv) whom we greatly thank.

Numerous figures from the German text have been adapted for the English
edition by J. Bockholt, V. Träumer, and G. Vogt of the Max-Planck-Institut
für Kernphysik in Heidelberg.

We would like to extend our thanks to Springer-Verlag, in particular
W. Beiglböck for his support and advice during the preparation of the Ger-
man and, later on, the English editions of this book.

Heidelberg, May 1995 Bogdan Povh
Klaus Rith
Christoph Scholz
Frank Zetsche
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2 Global Properties of Nuclei

The discovery of the electron and of radioactivity marked the beginning of a
new era in the investigation of matter. At that time, some signs of the atomic
structure of matter were already clearly visible: e. g. the integer stoichiometric
proportions of chemistry, the thermodynamics of gases, the periodic system
of the elements or Brownian motion. But the existence of atoms was not yet
generally accepted. The reason was simple: nobody was able to really picture
these building blocks of matter, the atoms. The new discoveries showed for
the first time “particles” emerging from matter which had to be interpreted
as its constituents.

It now became possible to use the particles produced by radioactive de-
cay to bombard other elements in order to study the constituents of the
latter. This experimental ansatz is the basis of modern nuclear and parti-
cle physics. Systematic studies of nuclei became possible by the late thirties
with the availability of modern particle accelerators. But the fundamental
building blocks of atoms – the electron, proton and neutron – were detected
beforehand. A pre-condition for these discoveries were important technical
developments in vacuum techniques and in particle detection. Before we turn
to the global properties of nuclei from a modern viewpoint, we will briefly
discuss these historical experiments.

2.1 The Atom and its Constituents

The electron. The first building block of the atom to be identified was the
electron. In 1897 Thomson was able to produce electrons as beams of free
particles in discharge tubes. By deflecting them in electric and magnetic fields,
he could determine their velocity and the ratio of their mass and charge. The
results turned out to be independent of the kind of cathode and gas used. He
had in other words found a universal constituent of matter. He then measured
the charge of the electron independently — using a method that was in 1910
significantly refined by Millikan (the drop method) — this of course also fixed
the electron mass.

The atomic nucleus. Subsequently, different models of the atom were dis-
cussed, one of them being the model of Thomson. In this model, the electrons,
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and an equivalent number of positively charged particles are uniformly dis-
tributed throughout the atom. The resulting atom is electrically neutral.
Rutherford, Geiger and Marsden succeeded in disproving this picture. In
their famous experiments, where they scattered α-particles off heavy atoms,
they were able to show that the positively charged particles are closely packed
together. They reached this conclusion from the angular distribution of the
scattered α-particles. The angular distribution showed α-particle scattering
at large scattering angles which was incompatible with a homogeneous charge
distribution. The explanation of the scattering data was a central Coulomb
field caused by a massive, positively charged nucleus. The method of extract-
ing the properties of the scattering potential from the angular distribution
of the scattered projectiles is still of great importance in nuclear and particle
physics, and we will encounter it repeatedly in the following chapters. These
experiments established the existence of the atom as a positively charged,
small, massive nucleus with negatively charged electrons orbiting it.

The proton. Rutherford also bombarded light nuclei with α-particles which
themselves were identified as ionised helium atoms. In these reactions, he was
looking for a conversion of elements, i.e., for a sort of inverse reaction to ra-
dioactive α-decay, which itself is a conversion of elements. While bombarding
nitrogen with α-particles, he observed positively charged particles with an
unusually long range, which must have been ejected from the atom as well.
From this he concluded that the nitrogen atom had been destroyed in these
reactions, and a light constituent of the nucleus had been ejected. He had
already discovered similar long-ranged particles when bombarding hydrogen.
From this he concluded that these particles were hydrogen nuclei which,
therefore, had to be constituents of nitrogen as well. He had indeed observed
the reaction

14N + 4He → 17O + p ,

in which the nitrogen nucleus is converted into an oxygen nucleus, by the
loss of a proton. The hydrogen nucleus could therefore be regarded as an
elementary constituent of atomic nuclei. Rutherford also assumed that it
would be possible to disintegrate additional atomic nuclei by using α-particles
with higher energies than those available to him. He so paved the way for
modern nuclear physics.

The neutron. The neutron was also detected by bombarding nuclei with
α-particles. Rutherford’s method of visually detecting and counting particles
by their scintillation on a zinc sulphide screen is not applicable to neutral
particles. The development of ionisation and cloud chambers significantly
simplified the detection of charged particles, but did not help here. Neutral
particles could only be detected indirectly. Chadwick in 1932 found an ap-
propriate experimental approach. He used the irradiation of beryllium with
α-particles from a polonium source, and thereby established the neutron as
a fundamental constituent of nuclei. Previously, a “neutral radiation” had
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been observed in similar experiments, but its origin and identity was not
understood. Chadwick arranged for this neutral radiation to collide with hy-
drogen, helium and nitrogen, and measured the recoil energies of these nuclei
in a ionisation chamber. He deduced from the laws of collision that the mass
of the neutral radiation particle was similar to that of the proton. Chadwick
named this particle the “neutron”.

Nuclear force and binding. With these discoveries, the building blocks
of the atom had been found. The development of ion sources and mass spec-
trographs now permitted the investigation of the forces binding the nuclear
constituents, i.e., the proton and the neutron. These forces were evidently
much stronger than the electromagnetic forces holding the atom together,
since atomic nuclei could only be broken up by bombarding them with highly
energetic α-particles.

The binding energy of a system gives information about its binding and
stability. This energy is the difference between the mass of a system and
the sum of the masses of its constituents. It turns out that for nuclei this
difference is close to 1 % of the nuclear mass. This phenomenon, historically
called the mass defect, was one of the first experimental proofs of the mass-
energy relation E =mc2. The mass defect is of fundamental importance in
the study of strongly interacting bound systems. We will therefore describe
nuclear masses and their systematics in this chapter at some length.

2.2 Nuclides

The atomic number. The atomic number Z gives the number of protons in
the nucleus. The charge of the nucleus is, therefore, Q = Ze, the elementary
charge being e = 1.6·10−19 C. In a neutral atom, there are Z electrons, which
balance the charge of the nucleus, in the electron cloud. The atomic number
of a given nucleus determines its chemical properties.

The classical method of determining the charge of the nucleus is the mea-
surement of the characteristic X-rays of the atom to be studied. For this
purpose the atom is excited by electrons, protons or synchrotron radiation.
Moseley’s law says that the energy of the Kα-line is proportional to (Z−1)2.
Nowadays, the detection of these characteristic X-rays is used to identify
elements in material analysis.

Atoms are electrically neutral, which shows the equality of the absolute
values of the positive charge of the proton and the negative charge of the
electron. Experiments measuring the deflection of molecular beams in electric
fields yield an upper limit for the difference between the proton and electron
charges [Dy73]:

|ep + ee| ≤ 10−18e . (2.1)

Today cosmological estimates give an even smaller upper limit for any differ-
ence between these charges.
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The mass number. In addition to the Z protons, N neutrons are found in
the nucleus. The mass number A gives the number of nucleons in the nucleus,
where A = Z+N . Different combinations of Z and N (or Z and A) are called
nuclides.

– Nuclides with the same mass number A are called isobars.
– Nuclides with the same atomic number Z are called isotopes.
– Nuclides with the same neutron number N are called isotones.

The binding energy B is usually determined from atomic masses [AM93],
since they can be measured to a considerably higher precision than nuclear
masses. We have:

B(Z,A) =
[
ZM(1H) + (A− Z)Mn −M(A,Z)

]
· c2 . (2.2)

Here, M(1H) = Mp + me is the mass of the hydrogen atom (the 13.6 eV
binding energy of the H-atom is negligible), Mn is the mass of the neutron
and M(A,Z) is the mass of an atom with Z electrons whose nucleus contains
A nucleons. The rest masses of these particles are:

Mp = 938.272 MeV/c2 = 1836.149 me

Mn = 939.566 MeV/c2 = 1838.679 me

me = 0.511 MeV/c2.

The conversion factor into SI units is 1.783 · 10−30 kg/(MeV/c2).
In nuclear physics, nuclides are denoted by AX, X being the chemical

symbol of the element. E.g., the stable carbon isotopes are labelled 12C and
13C; while the radioactive carbon isotope frequently used for isotopic dating
is labelled 14C. Sometimes the notations A

ZX or A
ZXN are used, whereby the

atomic number Z and possibly the neutron number N are explicitly added.

Determining masses from mass spectroscopy. The binding energy of an
atomic nucleus can be calculated if the atomic mass is accurately known. At
the start of the 20th century, the method of mass spectrometry was developed
for precision determinations of atomic masses (and nucleon binding energies).
The deflection of an ion with charge Q in an electric and magnetic field allows
the simultaneous measurement of its momentum p = Mv and its kinetic
energy Ekin = Mv2/2. From these, its mass can be determined. This is how
most mass spectrometers work.

While the radius of curvature rE of the ionic path in an electrical sector
field is proportional to the energy:

rE =
M

Q
· v

2

E
, (2.3)

in a magnetic field B, the radius of curvature rM of the ion is proportional
to its momentum:

rM =
M

Q
· v
B
. (2.4)
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Detector

Ion source

Fig. 2.1. Doubly focusing mass spectrometer [Br64]. The spectrometer focuses ions
of a certain specific charge to mass ratio Q/M . For clarity, only the trajectories of
particles at the edges of the beam are drawn (1 and 2 ). The electric and magnetic
sector fields draw the ions from the ion source into the collector. Ions with a different
Q/M ratio are separated from the beam in the magnetic field and do not pass
through the slit O.

Figure 2.1 shows a common spectrometer design. After leaving the ion
source, the ions are accelerated in an electric field to about 40 keV. In an
electric field, they are then separated according to their energy and, in a
magnetic field, according to their momentum. By careful design of the mag-
netic fields, ions with identical Q/M ratios leaving the ion source at various
angles are focused at a point at the end of the spectrometer where a detector
can be placed.

For technical reasons, it is very convenient to use the 12C nuclide as the
reference mass. Carbon and its many compounds are always present in a
spectrometer and are well suited for mass calibration. An atomic mass unit
u was therefore defined as 1/12 of the atomic mass of the 12C nuclide. We
have:

1u =
1
12
M12C = 931.494 MeV/c2 = 1.660 54 · 10−27 kg .

Mass spectrometers are still widely used both in research and industry.

Nuclear abundance. A current application of mass spectroscopy in fun-
damental research is the determination of isotope abundances in the solar
system. The relative abundance of the various nuclides as a function of their
mass number A is shown in Fig. 2.2. The relative abundances of isotopes in
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Mass number A

Abundance [Si=106]

Fig. 2.2. Abundance of the elements in the solar system as a function of their mass
number A, normalised to the abundance of silicon (= 106).

terrestrial, lunar, and meteoritic probes are, with few exceptions, identical
and coincide with the nuclide abundances in cosmic rays from outside the
solar system. According to current thinking, the synthesis of the presently
existing deuterium and helium from hydrogen fusion mainly took place at
the beginning of the universe (minutes after the big bang [Ba80]). Nuclei up
to 56Fe, the most stable nucleus, were produced by nuclear fusion in stars.
Nuclei heavier than this last were created in the explosion of very heavy stars
(supernovae) [Bu57].

Deviations from the universal abundance of isotopes occur locally when
nuclides are formed in radioactive decays. Figure 2.3 shows the abundances
of various xenon isotopes in a drill core which was found at a depth of 10 km.
The isotope distribution strongly deviates from that which is found in the
earth’s atmosphere. This deviation is a result of the atmospheric xenon being,
for the most part, already present when the earth came into existence, while
the xenon isotopes from the core come from radioactive decays (spontaneous
fission of uranium isotopes).
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Mass number A

Fig. 2.3. Mass spectrum of
xenon isotopes, found in a
roughly 2.7·109 year old gneiss
sample from a drill core pro-
duced in the Kola peninsula
(top) and, for comparison, the
spectrum of Xe-isotopes as
they occur in the atmosphere
(bottom). The Xe-isotopes in
the gneiss were produced by
spontaneous fission of ura-
nium. (Picture courtesy of
Klaus Schäfer, Max-Planck-
Institut für Kernphysik.)

Determining masses from nuclear reactions. Binding energies may also
be determined from systematic studies of nuclear reactions. Consider, as an
example, the capture of thermal neutrons (Ekin ≈ 1/40 eV) by hydrogen,

n + 1H → 2H + γ . (2.5)

The energy of the emitted photon is directly related to the binding energy B
of the deuterium nucleus 2H:

B = (Mn +M1H −M2H) · c2 = Eγ +
E2

γ

2M2Hc2
= 2.225 MeV, (2.6)

where the last term takes into account the recoil energy of the deuteron. As
a further example, we consider the reaction

1H + 6Li → 3He + 4He .

The energy balance of this reaction is given by

E1H + E6Li = E3He + E4He , (2.7)

where the energies EX each represent the total energy of the nuclide X, i.e.,
the sum of its rest mass and kinetic energy. If three of these nuclide masses
are known, and if all of the kinetic energies have been measured, then the
binding energy of the fourth nuclide can be determined.

The measurement of binding energies from nuclear reactions was mainly
accomplished using low-energy (van de Graaff, cyclotron, betatron) acceler-
ators. Following two decades of measurements in the fifties and sixties, the
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Fig. 2.4. Binding energy per nucleon of nuclei with even mass number A. The solid
line corresponds to the Weizsäcker mass formula (2.8). Nuclei with a small number
of nucleons display relatively large deviations from the general trend, and should
be considered on an individual basis. For heavy nuclei deviations in the form of a
somewhat stronger binding per nucleon are also observed for certain proton and
neutron numbers. These so-called “magic numbers” will be discussed in Sect. 17.3.

systematic errors of both methods, mass spectrometry and the energy balance
of nuclear reactions, have been considerably reduced and both now provide
high precision results which are consistent with each other. Figure 2.4 shows
schematically the results of the binding energies per nucleon measured for
stable nuclei. Nuclear reactions even provide mass determinations for nuclei
which are so short-lived that that they cannot be studied by mass spec-
troscopy.

2.3 Parametrisation of Binding Energies

Apart from the lightest elements, the binding energy per nucleon for most
nuclei is about 8-9 MeV. Depending only weakly on the mass number, it can
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be described with the help of just a few parameters. The parametrisation of
nuclear masses as a function of A and Z, which is known as the Weizsäcker
formula or the semi-empirical mass formula, was first introduced in 1935
[We35, Be36]. It allows the calculation of the binding energy according to
(2.2). The mass of an atom with Z protons and N neutrons is given by the
following phenomenological formula:

M(A,Z) = NMn + ZMp + Zme − avA+ asA
2/3

+ ac
Z2

A1/3
+ aa

(N − Z)2

4A
+

δ

A1/2
(2.8)

with N = A− Z .

The exact values of the parameters av, as, ac, aa and δ depend on the
range of masses for which they are optimised. One possible set of parameters
is given below:

av = 15.67 MeV/c2

as = 17.23 MeV/c2

ac = 0.714 MeV/c2

aa = 93.15 MeV/c2

δ =

⎧
⎨

⎩

−11.2 MeV/c2 for even Z and N (even-even nuclei)
0 MeV/c2 for odd A (odd-even nuclei)

+11.2 MeV/c2 for odd Z and N (odd-odd nuclei).

To a great extent the mass of an atom is given by the sum of the masses
of its constituents (protons, neutrons and electrons). The nuclear binding re-
sponsible for the deviation from this sum is reflected in five additional terms.
The physical meaning of these five terms can be understood by recalling that
the nuclear radius R and mass number A are connected by the relation

R ∝ A1/3. (2.9)

The experimental proof of this relation and a quantitative determination of
the coefficient of proportionality will be discussed in Sect. 5.4. The individual
terms can be interpreted as follows:

Volume term. This term, which dominates the binding energy, is propor-
tional to the number of nucleons. Each nucleon in the interior of a (large)
nucleus contributes an energy of about 16 MeV. From this we deduce that
the nuclear force has a short range, corresponding approximately to the dis-
tance between two nucleons. This phenomenon is called saturation. If each
nucleon would interact with each of the other nucleons in the nucleus, the
total binding energy would be proportional to A(A − 1) or approximately
to A2. Due to saturation, the central density of nucleons is the same for all
nuclei, with few exceptions. The central density is
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0 ≈ 0.17 nucleons/fm3 = 3 · 1017 kg/m3
. (2.10)

The average nuclear density, which can be deduced from the mass and radius
(see 5.56), is smaller (0.13 nucleons/fm3). The average inter-nucleon distance
in the nucleus is about 1.8 fm.

Surface term. For nucleons at the surface of the nucleus, which are sur-
rounded by fewer nucleons, the above binding energy is reduced. This con-
tribution is proportional to the surface area of the nucleus (R2 or A2/3).

Coulomb term. The electrical repulsive force acting between the protons
in the nucleus further reduces the binding energy. This term is calculated to
be

ECoulomb =
3
5
Z(Z − 1)α �c

R
. (2.11)

This is approximately proportional to Z2/A1/3.

Asymmetry term. As long as mass numbers are small, nuclei tend to
have the same number of protons and neutrons. Heavier nuclei accumulate
more and more neutrons, to partly compensate for the increasing Coulomb
repulsion by increasing the nuclear force. This creates an asymmetry in the
number of neutrons and protons. For, e.g., 208Pb it amounts to N–Z = 44.
The dependence of the nuclear force on the surplus of neutrons is described by
the asymmetry term (N−Z)2/(4A). This shows that the symmetry decreases
as the nuclear mass increases. We will further discuss this point in Sect. 17.1.
The dependence of the above terms on A is shown in Fig. 2.5.

Pairing term. A systematic study of nuclear masses shows that nuclei are
more stable when they have an even number of protons and/or neutrons.
This observation is interpreted as a coupling of protons and neutrons in
pairs. The pairing energy depends on the mass number, as the overlap of the
wave functions of these nucleons is smaller, in larger nuclei. Empirically this
is described by the term δ ·A−1/2 in (2.8).

All in all, the global properties of the nuclear force are rather well de-
scribed by the mass formula (2.8). However, the details of nuclear structure
which we will discuss later (mainly in Chap. 17) are not accounted for by
this formula.

The Weizsäcker formula is often mentioned in connection with the liquid
drop model . In fact, the formula is based on some properties known from
liquid drops: constant density, short-range forces, saturation, deformability
and surface tension. An essential difference, however, is found in the mean
free path of the particles. For molecules in liquid drops, this is far smaller than
the size of the drop; but for nucleons in the nucleus, it is large. Therefore,
the nucleus has to be treated as a quantum liquid, and not as a classical one.
At low excitation energies, the nucleus may be even more simply described
as a Fermi gas; i. e., as a system of free particles only weakly interacting with
each other. This model will be discussed in more detail in Sect. 17.1.
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Fig. 2.5. The different contributions to
the binding energy per nucleon versus
mass number A. The horizontal line at
≈ 16 MeV represents the contribution
of the volume energy. This is reduced by
the surface energy, the asymmetry en-
ergy and the Coulomb energy to the ef-
fective binding energy of ≈ 8 MeV (lower
line). The contributions of the asymme-
try and Coulomb terms increase rapidly
with A, while the contribution of the sur-
face term decreases.

2.4 Charge Independence of the Nuclear Force
and Isospin

Protons and neutrons not only have nearly equal masses, they also have
similar nuclear interactions. This is particularly visible in the study of mirror
nuclei. Mirror nuclei are pairs of isobars, in which the proton number of one
of the nuclides equals the neutron number of the other and vice versa.

Figure 2.6 shows the lowest energy levels of the mirror nuclei 14
6C8 and

14
8O6, together with those of 14

7N7. The energy-level diagrams of 14
6C8 and

14
8O6 are very similar with respect to the quantum numbers JP of the levels

as well as with respect to the distances between them. The small differences
and the global shift of the levels as a whole in 14

6C8, as compared to 14
8O6

can be explained by differences in the Coulomb energy. Further examples of
mirror nuclei will be discussed in Sect. 17.3 (Fig. 17.7). The energy levels
of 14

6C8 and 14
8O6 are also found in the isobaric nucleus 14

7N7. Other states
in 14

7N7 have no analogy in the two neighbouring nuclei. We therefore can
distinguish between triplet and singlet states.

These multiplets of states are reminiscent of the multiplets known from
the coupling of angular momenta (spins). The symmetry between protons and
neutrons may therefore be described by a similar formalism, called isospin I.
The proton and neutron are treated as two states of the nucleon which form
a doublet (I=1/2).

Nucleon: I = 1/2
{

proton: I3 = +1/2
neutron: I3 = −1/2 (2.12)

Formally, isospin is treated as a quantum mechanical angular momentum.
For example, a proton-neutron pair can be in a state of total isospin 1 or 0.
The third (z-) component of isospin is additive:

I nucleus
3 =

∑
I nucleon
3 =

Z−N
2

. (2.13)
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Fig. 2.6. Low-lying energy levels of the three most stable A = 14 isobars. Angular
momentum J and parity P are shown for the most important levels. The analogous
states of the three nuclei are joined by dashed lines. The zero of the energy scale is
set to the ground state of 14

7N7.

This enables us to describe the appearance of similar states in Fig. 2.6: 14
6C8

and 14
8O6, have respectively I3 = −1 and I3 = +1. Therefore, their isospin

cannot be less than I=1. The states in these nuclei thus necessarily belong
to a triplet of similar states in 14

6C8,
14
7N7 and 14

8O6. The I3 component of
the nuclide 14

7N7, however, is 0. This nuclide can, therefore, have additional
states with isospin I=0.

Since 14
7N7 is the most stable A=14 isobar, its ground state is necessar-

ily an isospin singlet since otherwise 14
6C8 would possess an analogous state,

which, with less Coulomb repulsion, would be lower in energy and so more
stable. I = 2 states are not shown in Fig. 2.6. Such states would have anal-
ogous states in 14

5B9 and in 14
9F5. These nuclides, however, are very unstable

(i. e., highly energetic), and lie above the energy range of the diagram. The
A = 14 isobars are rather light nuclei in which the Coulomb energy is not
strongly felt. In heavier nuclei, the influence of the Coulomb energy grows,
which increasingly disturbs the isospin symmetry.

The concept of isospin is of great importance not only in nuclear physics,
but also in particle physics. As we will see quarks, and particles composed
of quarks, can be classified by isospin into isospin multiplets. In dynamical
processes of the strong-interaction type, the isospin of the system is conserved.
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Problem
1. Isospin symmetry

One could naively imagine the three nucleons in the 3H and 3He nuclei as being
rigid spheres. If one solely attributes the difference in the binding energies of
these two nuclei to the electrostatic repulsion of the protons in 3He, how large
must the separation of the protons be? (The maximal energy of the electron in
the β−-decay of 3H is 18.6 keV.)
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Stable nuclei only occur in a very narrow band in the Z−N plane (Fig. 3.1).
All other nuclei are unstable and decay spontaneously in various ways. Isobars
with a large surplus of neutrons gain energy by converting a neutron into a
proton. In the case of a surplus of protons, the inverse reaction may occur:
i.e., the conversion of a proton into a neutron. These transformations are
called β-decays and they are manifestations of the weak interaction. After
dealing with the weak interaction in Chap. 10, we will discuss these decays
in more detail in Sects. 15.5 and 17.6. In the present chapter, we will merely
survey certain general properties, paying particular attention to the energy
balance of β-decays.

spontaneous fission

p-unstable

n-unstable

β-stable nuclides

Fig. 3.1. β-stable nuclei in the Z − N plane (from [Bo69]).

Fe- and Ni-isotopes possess the maximum binding energy per nucleon
and they are therefore the most stable nuclides. In heavier nuclei the binding
energy is smaller because of the larger Coulomb repulsion. For still heavier
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masses nuclei become unstable to fission and decay spontaneously into two
or more lighter nuclei should the mass of the original atom be larger than
the sum of the masses of the daughter atoms. For a two-body decay, this
condition has the form:

M(A,Z) > M(A−A′, Z − Z ′) +M(A′, Z ′) . (3.1)

This relation takes into account the conservation of the number of protons
and neutrons. However, it does not give any information about the probability
of such a decay. An isotope is said to be stable if its lifetime is considerably
longer than the age of the solar system. We will not consider many-body
decays any further since they are much rarer than two-body decays. It is
very often the case that one of the daughter nuclei is a 4He nucleus, i. e.,
A′ = 4, Z ′ = 2. This decay mode is called α-decay, and the Helium nucleus
is called an α-particle. If a heavy nucleus decays into two similarly massive
daughter nuclei we speak of spontaneous fission. The probability of sponta-
neous fission exceeds that of α-decay only for nuclei with Z >∼ 110 and is a
fairly unimportant process for the naturally occurring heavy elements.

Decay constants. The probability per unit time for a radioactive nucleus
to decay is known as the decay constant λ. It is related to the lifetime τ and
the half life t1/2 by:

τ =
1
λ

and t1/2 =
ln 2
λ
. (3.2)

The measurement of the decay constants of radioactive nuclei is based
upon finding the activity (the number of decays per unit time):

A = −dN
dt

= λN (3.3)

whereN is the number of radioactive nuclei in the sample. The unit of activity
is defined to be

1 Bq [Becquerel] = 1 decay /s. (3.4)

For short-lived nuclides, the fall-off over time of the activity:

A(t) = λN(t) = λN0 e−λt where N0 = N(t = 0) (3.5)

may be measured using fast electronic counters. This method of measuring
is not suitable for lifetimes larger than about a year. For longer-lived nuclei
both the number of nuclei in the sample and the activity must be measured
in order to obtain the decay constant from (3.3).

3.1 β-Decay

Let us consider nuclei with equal mass number A (isobars). Equation 2.8 can
be transformed into:
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M(A,Z) = α ·A− β · Z + γ · Z2 +
δ

A1/2
, (3.6)

where α = Mn − av + asA
−1/3 +

aa

4
,

β = aa + (Mn −Mp −me) ,

γ =
aa

A
+

ac

A1/3
,

δ = as in (2.8) .

The nuclear mass is now a quadratic function of Z. A plot of such nuclear
masses, for constant mass number A, as a function of Z, the charge number,
yields a parabola for odd A. For even A, the masses of the even-even and the
odd-odd nuclei are found to lie on two vertically shifted parabolas. The odd-
odd parabola lies at twice the pairing energy (2δ/

√
A) above the even-even

one. The minimum of the parabolas is found at Z = β/2γ. The nucleus with
the smallest mass in an isobaric spectrum is stable with respect to β-decay.

β-decay in odd mass nuclei. In what follows we wish to discuss the
different kinds of β-decay, using the example of the A = 101 isobars. For
this mass number, the parabola minimum is at the isobar 101Ru which has
Z = 44. Isobars with more neutrons, such as 101

42Mo and 101
43Tc, decay through

the conversion:
n → p + e− + νe . (3.7)

The charge number of the daughter nucleus is one unit larger than that of
the the parent nucleus (Fig. 3.2). An electron and an e-antineutrino are also
produced:

101
42Mo → 101

43Tc + e− + νe ,
101
43Tc → 101

44Ru + e− + νe .

Historically such decays where a negative electron is emitted are called β−-
decays. Energetically, β−-decay is possible whenever the mass of the daughter
atom M(A,Z + 1) is smaller than the mass of its isobaric neighbour:

M(A,Z) > M(A,Z + 1) . (3.8)

We consider here the mass of the whole atom and not just that of the nucleus
alone and so the rest mass of the electron created in the decay is automatically
taken into account. The tiny mass of the (anti-)neutrino (<15 eV/c2) [PD98]
is negligible in the mass balance.

Isobars with a proton excess, compared to 101
44Ru, decay through proton

conversion:
p → n + e+ + νe . (3.9)

The stable isobar 101
44Ru is eventually produced via
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Fig. 3.2. Mass parabola of
the A = 101 isobars (from
[Se77]). Possible β-decays are
shown by arrows. The abscissa
co-ordinate is the atomic num-
ber, Z. The zero point of the
mass scale was chosen arbitrar-
ily.

101
46Pd → 101

45Rh + e+ + νe , and
101
45Rh → 101

44Ru + e+ + νe .

Such decays are called β+-decays. Since the mass of a free neutron is larger
than the proton mass, the process (3.9) is only possible inside a nucleus.
By contrast, neutrons outside nuclei can and do decay (3.7). Energetically,
β+-decay is possible whenever the following relationship between the masses
M(A,Z) and M(A,Z − 1) (of the parent and daughter atoms respectively)
is satisfied:

M(A,Z) > M(A,Z − 1) + 2me . (3.10)

This relationship takes into account the creation of a positron and the exis-
tence of an excess electron in the parent atom.

β-decay in even nuclei. Even mass number isobars form, as we described
above, two separate (one for even-even and one for odd-odd nuclei) parabolas
which are split by an amount equal to twice the pairing energy.

Often there is more than one β-stable isobar, especially in the range A >
70. Let us consider the example of the nuclides with A = 106 (Fig. 3.3). The
even-even 106

46Pd and 106
48Cd isobars are on the lower parabola, and 106

46Pd is the
stablest. 106

48Cd is β-stable, since its two odd-odd neighbours both lie above
it. The conversion of 106

48Cd is thus only possible through a double β-decay
into 106

46Pd:
106
48Cd → 106

46Pd + 2e+ + 2νe .

The probability for such a process is so small that 106
48Cd may be considered

to be a stable nuclide.
Odd-odd nuclei always have at least one more strongly bound, even-even

neighbour nucleus in the isobaric spectrum. They are therefore unstable. The
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only exceptions to this rule are the very light nuclei 2
1H, 6

3Li, 10
5B and 14

7N,
which are stable to β-decay, since the increase in the asymmetry energy would
exceed the decrease in pairing energy. Some odd-odd nuclei can undergo both
β−-decay and β+-decay. Well-known examples of this are 40

19K (Fig. 3.4) and
64
29Cu.

Electron capture. Another possible decay process is the capture of an
electron from the cloud surrounding the atom. There is a finite probability
of finding such an electron inside the nucleus. In such circumstances it can
combine with a proton to form a neutron and a neutrino in the following way:

p + e− → n + νe . (3.11)

This reaction occurs mainly in heavy nuclei where the nuclear radii are larger
and the electronic orbits are more compact. Usually the electrons that are
captured are from the innermost (the “K”) shell since such K-electrons are
closest to the nucleus and their radial wave function has a maximum at
the centre of the nucleus. Since an electron is missing from the K-shell after
such a K-capture, electrons from higher energy levels will successively cascade
downwards and in so doing they emit characteristic X-rays.

Electron capture reactions compete with β+-decay. The following condi-
tion is a consequence of energy conservation

M(A,Z) > M(A,Z − 1) + ε , (3.12)

where ε is the excitation energy of the atomic shell of the daughter nucleus
(electron capture always leads to a hole in the electron shell). This process
has, compared to β+-decay, more kinetic energy (2mec

2 − ε more) available
to it and so there are some cases where the mass difference between the initial
and final atoms is too small for conversion to proceed via β+-decay and yet
K-capture can take place.
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Energy
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t1/2= 1.27.109a
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Fig. 3.4. The β-decay of 40K. In this nuclear conversion, β−- and β+-decay as well
as electron capture (EC) compete with each other. The relative frequency of these
decays is given in parentheses. The bent arrow in β+-decay indicates that the pro-
duction of an e+ and the presence of the surplus electron in the 40Ar atom requires
1.022 MeV, and the remainder is carried off as kinetic energy by the positron and
the neutrino. The excited state of 40Ar produced in the electron capture reaction
decays by photon emission into its ground state.

Lifetimes. The lifetimes τ of β-unstable nuclei vary between a few ms and
1016 years. They strongly depend upon both the energy E which is released
(1/τ ∝ E5) and upon the nuclear properties of the mother and daughter
nuclei. The decay of a free neutron into a proton, an electron and an antineu-
trino releases 0.78 MeV and this particle has a lifetime of τ = 886.7 ± 1.9 s
[PD98]. No two neighbouring isobars are known to be β-stable.1

A well-known example of a long-lived β-emitter is the nuclide 40K. It
transforms into other isobars by both β−- and β+-decay. Electron capture in
40K also competes here with β+-decay. The stable daughter nuclei are 40Ar
and 40Ca respectively, which is a case of two stable nuclei having the same
mass number A (Fig. 3.4).

The 40K nuclide was chosen here because it contributes considerably to the
radiation exposure of human beings and other biological systems. Potassium
is an essential element: for example, signal transmission in the nervous system
functions by an exchange of potassium ions. The fraction of radioactive 40K
in natural potassium is 0.01 %, and the decay of 40K in the human body
contributes about 16 % of the total natural radiation which we are exposed
to.

1 In some cases, however, one of two neighbouring isobars is stable and the other
is extremely long-lived. The most common isotopes of indium (115In, 96 %) and
rhenium (187Re, 63 %) β−-decay into stable nuclei (115Sn and 187Os), but they
are so long-lived (τ = 3 · 1014 yrs and τ = 3 · 1011 yrs respectively) that they may
also be considered stable.
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3.2 α-Decay

Protons and neutrons have binding energies, even in heavy nuclei, of about
8 MeV (Fig. 2.4) and cannot generally escape from the nucleus. In many
cases, however, it is energetically possible for a bound system of a group
of nucleons to be emitted, since the binding energy of this system increases
the total energy available to the process. The probability for such a system
to be formed in a nucleus decreases rapidly with the number of nucleons
required. In practice the most significant decay process is the emission of a
4He nucleus; i. e., a system of 2 protons and 2 neutrons. Contrary to systems
of 2 or 3 nucleons, this so-called α-particle is extraordinarily strongly bound
— 7 MeV/nucleon (cf. Fig. 2.4). Such decays are called α-decays.

Figure 3.5 shows the potential energy of an α-particle as a function of its
separation from the centre of the nucleus. Beyond the nuclear force range, the
α-particle feels only the Coulomb potential VC(r) = 2(Z − 2)α�c/r, which
increases closer to the nucleus. Within the nuclear force range a strongly at-
tractive nuclear potential prevails. Its strength is characterised by the depth
of the potential well. Since we are considering α-particles which are energet-
ically allowed to escape from the nuclear potential, the total energy of this
α-particle is positive. This energy is released in the decay.

The range of lifetimes for the α-decay of heavy nuclei is extremely large.
Experimentally, lifetimes have been measured between 10 ns and 1017 years.
These lifetimes can be calculated in quantum mechanics by treating the α-
particle as a wave packet. The probability for the α-particle to escape from
the nucleus is given by the probability for its penetrating the Coulomb barrier
(the tunnel effect). If we divide the Coulomb barrier into thin potential walls
and look at the probability of the α-particle tunnelling through one of these
(Fig. 3.6), then the transmission T is given by:

T ≈ e−2κΔr where κ =
√

2m|E − V |/� , (3.13)

and Δr is the thickness of the barrier and V is its height. E is the energy of
the α-particle. A Coulomb barrier can be thought of as a barrier composed of

0

Vc = 2(Z--2) αhc
r

V(r)

E

R Δr r1
r

Fig. 3.5. Potential energy of an α-
particle as a function of its sepa-
ration from the centre of the nu-
cleus. The probability that it tun-
nels through the Coulomb barrier
can be calculated as the superposi-
tion of tunnelling processes through
thin potential walls of thickness Δr
(cf. Fig. 3.6).
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Δr

v

r

r

Δr

v
v

Fig. 3.6. Illustration of the tunnelling
probability of a wave packet with en-
ergy E and velocity v faced with a poten-
tial barrier of height V and thickness Δr.

a large number of thin potential walls of different heights. The transmission
can be described accordingly by:

T = e−2G . (3.14)

The Gamow factor G can be approximated by the integral [Se77]:

G =
1
�

∫ r1

R

√
2m|E − V |dr ≈ π · 2 · (Z − 2) · α

β
, (3.15)

where β = v/c is the velocity of the outgoing α-particle and R is the nuclear
radius.

The probability per unit time λ for an α-particle to escape from the
nucleus is therefore proportional to: the probability w(α) of finding such an
α-particle in the nucleus, the number of collisions (∝ v0/2R) of the α-particle
with the barrier and the transmission probability:

λ = w(α)
v0
2R

e−2G , (3.16)

where v0 is the velocity of the α-particle in the nucleus (v0 ≈ 0.1 c). The large
variation in the lifetimes is explained by the Gamow factor in the exponent:
since G ∝ Z/β ∝ Z/

√
E, small differences in the energy of the α-particle

have a strong effect on the lifetime.
Most α-emitting nuclei are heavier than lead. For lighter nuclei with A <∼

140, α-decay is energetically possible, but the energy released is extremely
small. Therefore, their nuclear lifetimes are so long that decays are usually
not observable.

An example of a α-unstable nuclide with a long lifetime, 238U, is shown in
Fig. 3.7. Since uranium compounds are common in granite, uranium and its
radioactive daughters are a part of the stone walls of buildings. They therefore
contribute to the environmental radiation background. This is particularly
true of the inert gas 222Rn, which escapes from the walls and is inhaled into
the lungs. The α-decay of 222Rn is responsible for about 40 % of the average
natural human radiation exposure.
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Fig. 3.7. Illustration of the 238U decay chain in the N–Z plane. The half life of
each of the nuclides is given together with its decay mode.

3.3 Nuclear Fission

Spontaneous fission. The largest binding energy per nucleon is found in
those nuclei in the region of 56Fe. For heavier nuclei, it decreases as the nuclear
mass increases (Fig. 2.4). A nucleus with Z > 40 can thus, in principle, split
into two lighter nuclei. The potential barrier which must be tunnelled through
is, however, so large that such spontaneous fission reactions are generally
speaking extremely unlikely.

The lightest nuclides where the probability of spontaneous fission is com-
parable to that of α-decay are certain uranium isotopes. The shape of the
fission barrier is shown in Fig. 3.8.

It is interesting to find the charge number Z above which nuclei become
fission unstable, i.e., the point from which the mutual Coulombic repulsion
of the protons outweighs the attractive nature of the nuclear force. An esti-
mate can be obtained by considering the surface and the Coulomb energies
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Fig. 3.8. Potential energy during different stages of a fission reaction. A nucleus
with charge Z decays spontaneously into two daughter nuclei. The solid line corre-
sponds to the shape of the potential in the parent nucleus. The height of the barrier
for fission determines the probability of spontaneous fission. The fission barrier dis-
appears for nuclei with Z2/A >∼ 48 and the shape of the potential then corresponds
to the dashed line.

during the fission deformation. As the nucleus is deformed the surface en-
ergy increases, while the Coulomb energy decreases. If the deformation leads
to an energetically more favourable configuration, the nucleus is unstable.
Quantitatively, this can be calculated as follows: keeping the volume of the
nucleus constant, we deform its spherical shape into an ellipsoid with axes
a = R(1 + ε) and b = R(1 − ε/2) (Fig. 3.9).

The surface energy then has the form:

Es = asA
2/3

(
1 +

2
5
ε2 + · · ·

)
, (3.17)

while the Coulomb energy is given by:

Ec = acZ
2A−1/3

(
1 − 1

5
ε2 + · · ·

)
. (3.18)

Hence a deformation ε changes the total energy by:

ΔE =
ε2

5

(
2asA

2/3 − acZ
2A−1/3

)
. (3.19)

If ΔE is negative, a deformation is energetically favoured. The fission barrier
disappears for:

Z2

A
≥ 2as

ac
≈ 48 . (3.20)

This is the case for nuclei with Z > 114 and A > 270.
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R

Fig. 3.9. Deformation of a heavy nucleus. For a constant volume V (V = 4πR3/3 =
4πab2/3), the surface energy of the nucleus increases and its Coulomb energy de-
creases.

Induced fission. For very heavy nuclei (Z ≈ 92) the fission barrier is only
about 6 MeV. This energy may be supplied if one uses a flow of low energy
neutrons to induce neutron capture reactions. These push the nucleus into an
excited state above the fission barrier and it splits up. This process is known
as induced nuclear fission.

Neutron capture by nuclei with an odd neutron number releases not just
some binding energy but also a pairing energy. This small extra contribution
to the energy balance makes a decisive difference to nuclide fission properties:
in neutron capture by 238U, for example, 4.9MeV binding energy is released,
which is below the threshold energy of 5.5 MeV for nuclear fission of 239U.
Neutron capture by 238U can therefore only lead to immediate nuclear fission
if the neutron possesses a kinetic energy at least as large as this difference
(“fast neutrons”). On top of this the reaction probability is proportional to
v−1, where v is the velocity of the neutron (4.21), and so it is very small. By
contrast neutron capture in 235U releases 6.4 MeV and the fission barrier of
236U is just 5.5MeV. Thus fission may be induced in 235U with the help of low-
energy (thermal) neutrons. This is exploited in nuclear reactors and nuclear
weapons. Similarly both 233Th and 239Pu are suitable fission materials.

3.4 Decay of Excited Nuclear States

Nuclei usually have many excited states. Most of the lowest-lying states are
understood theoretically, at least in a qualitative way as will be discussed in
more detail in Chaps. 17 and 18.

Figure 3.10 schematically shows the energy levels of an even-even nucleus
with A ≈ 100. Above the ground state, individual discrete levels with spe-
cific JP quantum numbers can be seen. The excitation of even-even nuclei
generally corresponds to the break up of nucleon pairs, which requires about
1–2 MeV. Even-even nuclei with A >∼ 40, therefore, rarely possess excitations
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Fig. 3.10. Sketch of typical nuclear energy levels. The example shows an even-even
nucleus whose ground state has the quantum numbers 0+. To the left the total
cross-section for the reaction of the nucleus A−1

ZX with neutrons (elastic scattering,
inelastic scattering, capture) is shown; to the right the total cross-section for γ-
induced neutron emission A

ZX + γ → A−1
ZX + n.

below 2 MeV.2 In odd-even and odd-odd nuclei, the number of low-energy
states (with excitation energies of a few 100 keV) is considerably larger.

Electromagnetic decays. Low lying excited nuclear states usually decay
by emitting electromagnetic radiation. This can be described in a series ex-
pansion as a superposition of different multipolarities each with its charac-
teristic angular distribution. Electric dipole, quadrupole, octupole radiation
etc. are denoted by E1, E2, E3, etc. Similarly, the corresponding magnetic
multipoles are denoted by M1, M2, M3 etc. Conservation of angular momen-
tum and parity determine which multipolarities are possible in a transition.
A photon of multipolarity E� has angular momentum � and parity (−1)�,
an M� photon has angular momentum � and parity (−1)(�+1). In a transition

2 Collective states in deformed nuclei are an exception to this: they cannot be
understood as single particle excitations (Chap. 18).
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Table 3.1. Selection rules for some electromagnetic transitions.

Multi- Electric Magnetic
polarity E� |ΔJ | ΔP M� |ΔJ | ΔP

Dipole E1 1 − M1 1 +
Quadrupole E2 2 + M2 2 −
Octupole E3 3 − M3 3 +

Ji → Jf , conservation of angular momentum means that the triangle inequal-
ity |Ji − Jf | ≤ � ≤ Ji + Jf must be satisfied.

The lifetime of a state strongly depends upon the multipolarity of the
γ-transitions by which it can decay. The lower the multipolarity, the larger
the transition probability. A magnetic transition M� has approximately the
same probability as an electric E(� + 1) transition. A transition 3+ → 1+,
for example, is in principle a mixture of E2, M3, and E4, but will be easily
dominated by the E2 contribution. A 3+→2+ transition will usually consist
of an M1/E2 mixture, even though M3, E4, and M5 transitions are also
possible. In a series of excited states 0+, 2+, 4+, the most probable decay is
by a cascade of E2-transitions 4+ → 2+ → 0+, and not by a single 4+ → 0+

E4-transition. The lifetime of a state and the angular distribution of the
electromagnetic radiation which it emits are signatures for the multipolarity
of the transitions, which in turn betray the spin and parity of the nuclear
levels. The decay probability also strongly depends upon the energy. For
radiation of multipolarity � it is proportional to E2�+1

γ (cf. Sect. 18.1).
The excitation energy of a nucleus may also be transferred to an electron

in the atomic shell. This process is called internal conversion. It is most im-
portant in transitions for which γ-emission is suppressed (high multipolarity,
low energy) and the nucleus is heavy (high probability of the electron being
inside the nucleus).

0+→0+ transitions cannot proceed through photon emission. If a nucleus
is in an excited 0+-state, and all its lower lying levels also have 0+ quantum
numbers (e. g. in 16O or 40Ca – cf. Fig. 18.6), then this state can only decay
in a different way: by internal conversion, by emission of 2 photons or by
the emission of an e+e−-pair, if this last is energetically possible. Parity
conservation does not permit internal conversion transitions between two
levels with J = 0 and opposite parity.

The lifetime of excited nuclear states typically varies between 10−9 s and
10−15 s, which corresponds to a state width of less than 1 eV. States which
can only decay by low energy and high multipolarity transitions have consid-
erably longer lifetimes. They are called isomers and are designated by an “m”
superscript on the symbol of the element. An extreme example is the second
excited state of 110Ag, whose quantum numbers are JP = 6+ and excitation
energy is 117.7 keV. It relaxes via an M4-transition into the first excited state
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(1.3 keV; 2−) since a decay directly into the ground state (1+) is even more
improbable. The half life of 110Agm is extremely long (t1/2 = 235 d) [Le78].

Continuum states. Most nuclei have a binding energy per nucleon of about
8 MeV (Fig. 2.4). This is approximately the energy required to separate a
single nucleon from the nucleus (separation energy). States with excitation
energies above this value can therefore emit single nucleons. The emitted
nucleons are primarily neutrons since they are not hindered by the Coulomb
threshold. Such a strong interaction process is clearly preferred to γ-emission.

The excitation spectrum above the threshold for particle emission is called
the continuum, just as in atomic physics. Within this continuum there are
also discrete, quasi-bound states. States below this threshold decay only by
(relatively slow) γ-emission and are, therefore, very narrow. But for excita-
tion energies above the particle threshold, the lifetimes of the states decrease
dramatically, and their widths increase. The density of states increases ap-
proximately exponentially with the excitation energy. At higher excitation
energies, the states therefore start to overlap, and states with the same quan-
tum numbers can begin to mix.

The continuum can be especially effectively investigated by measuring
the cross-sections of neutron capture and neutron scattering. Even at high
excitation energies, some narrow states can be identified. These are states
with exotic quantum numbers (high spin) which therefore cannot mix with
neighbouring states.

Figure 3.10 shows schematically the cross-sections for neutron capture and
γ-induced neutron emission (nuclear photoelectric effect). A broad resonance
is observed, the giant dipole resonance, which will be interpreted in Sect. 18.2.
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Problems
1. α-decay

The α-decay of a 238Pu (τ=127 yrs) nuclide into a long lived 234U (τ = 3.5 ·
105 yrs) daughter nucleus releases 5.49 MeV kinetic energy. The heat so produced
can be converted into useful electricity by radio-thermal generators (RTG’s).
The Voyager 2 space probe, which was launched on the 20.8.1977, flew past four
planets, including Saturn which it reached on the 26.8.1981. Saturn’s separation
from the sun is 9.5 AU; 1 AU = separation of the earth from the sun.
a) How much plutonium would an RTG on Voyager 2 with 5.5 % efficiency have

to carry so as to deliver at least 395 W electric power when the probe flies
past Saturn?

b) How much electric power would then be available at Neptune (24.8.1989;
30.1 AU separation)?

c) To compare: the largest ever “solar paddles” used in space were those of the
space laboratory Skylab which would have produced 10.5 kW from an area
of 730 m2 if they had not been damaged at launch. What area of solar cells
would Voyager 2 have needed?

2. Radioactivity
Naturally occuring uranium is a mixture of the 238U (99.28 %) and 235U (0.72 %)
isotopes.
a) How old must the material of the solar system be if one assumes that at its

creation both isotopes were present in equal quantities? How do you interpret
this result? The lifetime of 235U is τ =1.015 · 109 yrs. For the lifetime of 238U
use the data in Fig. 3.7.

b) How much of the 238U has decayed since the formation of the earth’s crust
2.5·109 years ago?

c) How much energy per uranium nucleus is set free in the decay chain 238U→
206Pb? A small proportion of 238U spontaneously splits into, e. g., 142

54Xe und
96
38Sr.

3. Radon activity
After a lecture theatre whose walls, floor and ceiling are made of concrete
(10×10×4 m3) has not been aired for several days, a specific activity A from
222Rn of 100 Bq/m3 is measured.
a) Calculate the activity of 222Rn as a function of the lifetimes of the parent

and daughter nuclei.
b) How high is the concentration of 238U in the concrete if the effective thickness

from which the 222Rn decay product can diffuse is 1.5 cm?

4. Mass formula
Isaac Asimov in his novel The Gods Themselves describes a universe where the
stablest nuclide with A = 186 is not 186

74W but rather 186
94Pu. This is claimed to

be a consequence of the ratio of the strengths of the strong and electromagnetic
interactions being different to that in our universe. Assume that only the elec-
tromagnetic coupling constant α differs and that both the strong interaction and
the nucleon masses are unchanged. How large must α be in order that 186

82Pb,
186
88Ra and 186

94Pu are stable?
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5. α-decay
The binding energy of an α particle is 28.3 MeV. Estimate, using the mass for-
mula (2.8), from which mass number A onwards α-decay is energetically allowed
for all nuclei.

6. Quantum numbers
An even-even nucleus in the ground state decays by α emission. Which JP states
are available to the daughter nucleus?
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4.1 General Observations About Scattering Processes

Scattering experiments are an important tool of nuclear and particle physics.
They are used both to study details of the interactions between different
particles and to obtain information about the internal structure of atomic
nuclei and their constituents. These experiments will therefore be discussed
at length in the following.

In a typical scattering experiment, the object to be studied (the target)
is bombarded with a beam of particles with (mostly) well-defined energy.
Occasionally, a reaction of the form

a + b → c + d

between the projectile and the target occurs. Here, a and b denote the beam-
and target particles, and c and d denote the products of the reaction. In
inelastic reactions, the number of the reaction products may be larger than
two. The rate, the energies and masses of the reaction products and their
angles relative to the beam direction may be determined with suitable systems
of detectors.

It is nowadays possible to produce beams of a broad variety of particles
(electrons, protons, neutrons, heavy ions, . . . ). The beam energies available
vary between 10−3 eV for “cold” neutrons up to 1012 eV for protons. It is
even possible to produce beams of secondary particles which themselves have
been produced in high energy reactions. Some such beams are very short-
lived, such as muons, π– or K-mesons, or hyperons (Σ±, Ξ−, Ω−).

Solid, liquid or gaseous targets may be used as scattering material or,
in storage ring experiments, another beam of particles may serve as the
target. Examples of this last are the electron-positron storage ring LEP
(Large Electron Positron collider) at CERN1 in Geneva (maximum beam
energy at present: Ee+,e− = 86 GeV), the “Tevatron” proton-antiproton stor-
age ring at the Fermi National Accelerator Laboratory (FNAL) in the USA
(Ep,p = 900 GeV) and HERA (Hadron-Elektron-Ringanlage), the electron-
proton storage ring at DESY2 in Hamburg (Ee= 30 GeV, Ep= 920 GeV),
which last was brought on-line in 1992.
1 Conseil Européen pour la Recherche Nucléaire
2 Deutsches Elektronen-Synchrotron



42 4 Scattering

Figure 4.1 shows some scattering processes. We distinguish between elastic
and inelastic scattering reactions.

Elastic scattering. In an elastic process (Fig. 4.1a):

a + b → a′ + b′,

the same particles are presented both before and after the scattering. The
target b remains in its ground state, absorbing merely the recoil momentum
and hence changing its kinetic energy. The apostrophe indicates that the
particles in the initial and in the final state are identical up to momenta
and energy. The scattering angle and the energy of the a′ particle and the
production angle and energy of b′ are unambiguously correlated. As in optics,
conclusions about the spatial shape of the scattering object can be drawn from
the dependence of the scattering rate upon the beam energy and scattering
angle.

It is easily seen that in order to resolve small target structures, larger
beam energies are required. The reduced de-Broglie wave-length λ– = λ/2π
of a particle with momentum p is given by

λ– =
�

p
=

�c
√

2mc2Ekin + E2
kin

≈
{

�/
√

2mEkin for Ekin � mc2

�c/Ekin ≈ �c/E for Ekin � mc2 .
(4.1)

The largest wavelength that can resolve structures of linear extension Δx, is
of the same order: λ– <∼ Δx .
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Fig. 4.1. Scattering processes: (a) elastic scattering; (b) inelastic scattering –
production of an excited state which then decays into two particles; (c) inelastic
production of new particles; (d) reaction of colliding beams.



4.1 General Observations About Scattering Processes 43

p

e

γ

α

μ

1 TeV/c

1 GeV/c

1 MeV/c

1 keV/c
1keV            1MeV            1GeV           1TeV

  °1A

1pm

1fm

1am

p
λ

kinE

Fig. 4.2. The connection be-
tween kinetic energy, momen-
tum and reduced wave-length
of photons (γ), electrons (e),
muons (μ), protons (p), and
4He nuclei (α). Atomic diam-
eters are typically a few Å
(10−10 m), nuclear diameters
a few fm (10−15 m).

From Heisenberg’s uncertainty principle the corresponding particle momen-
tum is:

p >∼
�

Δx
, pc >∼

�c

Δx
≈ 200MeV fm

Δx
. (4.2)

Thus to study nuclei, whose radii are of a few fm, beam momenta of
the order of 10 − 100 MeV/c are necessary. Individual nucleons have radii of
about 0.8 fm; and may be resolved if the momenta are above ≈ 100MeV/c.
To resolve the constituents of a nucleon, the quarks, one has to penetrate
deeply into the interior of the nucleon. For this purpose, beam momenta of
many GeV/c are necessary (see Fig. 1.1).

Inelastic scattering. In inelastic reactions (Fig. 4.1b):

a + b → a′ + b∗
|→ c + d ,

part of the kinetic energy transferred from a to the target b excites it into a
higher energy state b∗. The excited state will afterwards return to the ground
state by emitting a light particle (e. g. a photon or a π-meson) or it may decay
into two or more different particles.

A measurement of a reaction in which only the scattered particle a′ is
observed (and the other reaction products are not), is called an inclusive
measurement. If all reaction products are detected, we speak of an exclusive
measurement.

When allowed by the laws of conservation of lepton and baryon number
(see Sect. 8.2 and 10.1), the beam particle may completely disappear in the
reaction (Fig. 4.1c,d). Its total energy then goes into the excitation of the
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target or into the production of new particles. Such inelastic reactions rep-
resent the basis of nuclear and particle spectroscopy, which will be discussed
in more detail in the second part of this book.

4.2 Cross Sections

The reaction rates measured in scattering experiments, and the energy spec-
tra and angular distributions of the reaction products yield, as we have al-
ready mentioned, information about the dynamics of the interaction between
the projectile and the target, i. e., about the shape of the interaction potential
and the coupling strength. The most important quantity for the description
and interpretation of these reactions is the so-called cross-section σ, which is
a yardstick of the probability of a reaction between the two colliding particles.

Geometric reaction cross-section. We consider an idealised experiment,
in order to elucidate this concept. Imagine a thin scattering target of thickness
d with Nb scattering centres b and with a particle density nb. Each target
particle has a cross-sectional area σb, to be determined by experiment. We
bombard the target with a monoenergetic beam of point-like particles a.
A reaction occurs whenever a beam particle hits a target particle, and we
assume that the beam particle is then removed from the beam. We do not
distinguish between the final target states, i. e., whether the reaction is elastic
or inelastic. The total reaction rate Ṅ , i. e. the total number of reactions per
unit time, is given by the difference in the beam particle rate Ṅa upstream
and downstream of the target. This is a direct measure for the cross-sectional
area σb (Fig. 4.3).

We further assume that the beam has cross-sectional area A and particle
density na. The number of projectiles hitting the target per unit area and
per unit time is called the flux Φa. This is just the product of the particle
density and the particle velocity va:

Φa =
Ṅa

A
= na · va , (4.3)

and has dimensions [(area×time)−1].
The total number of target particles within the beam area isNb = nb·A·d.

Hence the reaction rate Ṅ is given by the product of the incoming flux and
the total cross-sectional area seen by the particles:

Ṅ = Φa ·Nb · σb . (4.4)

This formula is valid as long as the scattering centres do not overlap
and particles are only scattered off individual scattering centres. The area
presented by a single scattering centre to the incoming projectile a, will be
called the geometric reaction cross-section: in what follows:
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Nb =nbAdΦa =nava

Fig. 4.3. Measurement of the geometric reaction cross-section. The particle beam,
a, coming from the left with velocity va and density na, corresponds to a particle
flux Φa = nava. It hits a (macroscopic) target of thickness d and cross-sectional
area A. Some beam particles are scattered by the scattering centres of the target,
i. e., they are deflected from their original trajectory. The frequency of this process
is a measure of the cross-sectional area of the scattering particles.

σb=
Ṅ

Φa ·Nb
(4.5)

=
number of reactions per unit time

beam particles per unit time per unit area × scattering centres
.

This definition assumes a homogeneous, constant beam (e. g., neutrons
from a reactor). In experiments with particle accelerators, the formula used
is:

σb =
number of reactions per unit time

beam particles per unit time × scattering centres per unit area
,

since the beam is then generally not homogeneous but the area density of the
scattering centres is.

Cross sections. This naive description of the geometric reaction cross-
section as the effective cross-sectional area of the target particles, (if nec-
essary convoluted with the cross-sectional area of the beam particles) is in
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many cases a good approximation to the true reaction cross-section. An ex-
ample is high-energy proton-proton scattering where the geometric extent of
the particles is comparable to their interaction range.

The reaction probability for two particles is, however, generally very dif-
ferent to what these geometric considerations would imply. Furthermore a
strong energy dependence is also observed. The reaction rate for the cap-
ture of thermal neutrons by uranium, for example, varies by several orders
of magnitude within a small energy range. The reaction rate for scattering of
(point-like) neutrinos, which only feel the weak interaction, is much smaller
than that for the scattering of (also point-like) electrons which feel the elec-
tromagnetic interaction.

The shape, strength and range of the interaction potential, and not the
geometric forms involved in the scattering process, primarily determine the
effective cross-sectional area. The interaction can be determined from the
reaction rate if the flux of the incoming beam particles, and the area density
of the scattering centres are known, just as in the model above. The total
cross-section is defined analogously to the geometric one:

σtot =
number of reactions per unit time

beam particles per unit time × scattering centres per unit area
.

In analogy to the total cross-section, cross-sections for elastic reactions σel

and for inelastic reactions σinel may also be defined. The inelastic part can
be further divided into different reaction channels. The total cross-section is
the sum of these parts:

σtot = σel + σinel . (4.6)

The cross-section is a physical quantity with dimensions of [area], and is
independent of the specific experimental design. A commonly used unit is the
barn, which is defined as:

1 barn = 1 b = 10−28 m2

1 millibarn = 1 mb = 10−31 m2

etc.

Typical total cross-sections at a beam energy of 10 GeV, for example, are

σpp(10 GeV) ≈ 40 mb (4.7)

for proton-proton scattering; and

σνp(10 GeV) ≈ 7 · 10−14 b = 70 fb (4.8)

for neutrino-proton scattering.
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Luminosity. The quantity
L = Φa ·Nb (4.9)

is called the luminosity. Like the flux, it has dimensions of [(area×time)−1].
From (4.3) and Nb = nb · d ·A we have

L = Φa ·Nb = Ṅa · nb · d = na · va ·Nb . (4.10)

Hence the luminosity is the product of the number of incoming beam particles
per unit time Ṅa, the target particle density in the scattering material nb,
and the target’s thickness d; or the beam particle density na, their velocity
va and the number of target particles Nb exposed to the beam.

There is an analogous equation for the case of two particle beams colliding
in a storage ring. Assume that j particle packets, each of Na or Nb particles,
have been injected into a ring of circumference U . The two particle types
circulate with velocity v in opposite directions. Steered by magnetic fields,
they collide at an interaction point j ·v/U times per unit time. The luminosity
is then:

L =
Na ·Nb · j · v/U

A
(4.11)

where A is the beam cross-section at the collision point. For a Gaussian
distribution of the beam particles around the beam centre (with horizontal
and vertical standard deviations σx and σy respectively), A is given by:

A = 4πσxσy . (4.12)

To achieve a high luminosity, the beams must be focused at the interaction
point into the smallest possible cross-sectional area possible. Typical beam
diameters are of the order of tenths of millimetres or less.

DA   /r

θ

Target plane

ΔΩ =  2

DA

r

Fig. 4.4. Description of the differential cross-section. Only particles scattered into
the small solid angle ΔΩ are recorded by the detector of cross-sectional area AD.
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An often used quantity in storage ring experiments is the integrated lu-
minosity

∫
Ldt. The number of reactions which can be observed in a given

reaction time is just the product of the integrated luminosity and the cross-
section. With a 1 nb cross-section and a 100 pb−1 integrated luminosity, for
example, 105 reactions would be expected.

Differential cross sections. In practice, only a fraction of all the reactions
are measured. A detector of area AD is placed at a distance r and at an angle
θ with respect to the beam direction, covering a solid angle ΔΩ = AD/r

2

(Fig. 4.4). The rate of reactions seen by this detector is then proportional to
the differential cross-section dσ(E, θ)/dΩ:

Ṅ(E, θ,ΔΩ) = L · dσ(E, θ)
dΩ

ΔΩ . (4.13)

If the detector can determine the energy E′ of the scattered particles then
one can measure the doubly differential cross-section d2σ(E,E′, θ)/dΩ dE′.
The total cross-section σ is then the integral over the total solid angle and
over all scattering energies:

σtot(E) =
∫ E′

max

0

∫

4π

d2σ(E,E′, θ)
dΩ dE′ dΩ dE′ . (4.14)

4.3 The “Golden Rule”

The cross-section can be experimentally determined from the reaction rate
Ṅ , as we saw above. We now outline how it may be found from theory.

First, the reaction rate is dependent upon the properties of the interac-
tion potential described by the Hamilton operator Hint. In a reaction, this
potential transforms the initial-state wave function ψi into the final-state
wave function ψf . The transition matrix element is given by:

Mfi = 〈ψf |Hint|ψi〉 =
∫
ψ∗f Hint ψi dV . (4.15)

This matrix element is also called the probability amplitude for the transition.
Furthermore, the reaction rate will depend upon the number of final states

available to the reaction. According to the uncertainty principle, each particle
occupies a volume h3 = (2π�)3 in phase space, the six-dimensional space of
momentum and position. Consider a particle scattered into a volume V and
into a momentum interval between p′ and p′ + dp′. In momentum space, the
interval corresponds to a spherical shell with inner radius p′ and thickness dp′

which has a volume 4πp′2dp′. Excluding processes where the spin changes,
the number of final states available is:

dn(p′) =
V · 4πp′2
(2π�)3

dp′ . (4.16)
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The energy and momentum of a particle are connected by:

dE′ = v′dp′. (4.17)

Hence the density of final states in the energy interval dE′ is given by:


(E′) =
dn(E′)

dE′ =
V · 4πp′2
v′ · (2π�)3

. (4.18)

The connection between the reaction rate, the transition matrix elemen-
tand the density of final states is expressed by Fermi’s second golden rule.
Its derivation can be found in quantum mechanics textbooks (e. g. [Sc95]). It
expresses the reaction rate W per target particle and per beam particle in
the form:

W =
2π
�

|Mfi|2 · 
(E′) . (4.19)

We also know, however, from (4.3) and (4.4) that:

W =
Ṅ(E)
Nb ·Na

=
σ · va
V

, (4.20)

where V = Na/na is the spatial volume occupied by the beam particles.
Hence, the cross-section is:

σ =
2π

� · va
|Mfi|2 · 
 (E′) · V . (4.21)

If the interaction potential is known, the cross-section can be calculated from
(4.21). Otherwise, the cross-section data and equation (4.21) can be used to
determine the transition matrix element.

The golden rule applies to both scattering and spectroscopic processes.
Examples of the latter are the decay of unstable particles, excitation of par-
ticle resonances and transitions between different atomic or nuclear energy
states. In these cases we have

W =
1
τ
, (4.22)

and the transition probability per unit time can be either directly determined
by measuring the lifetime τ or indirectly read off from the energy width of
the state ΔE = �/τ .

4.4 Feynman Diagrams

In QED, as in other quantum field theories, we can use the
little pictures invented by my colleague Richard Feynman,
which are supposed to give the illusion of understanding
what is going on in quantum field theory.

M. Gell-Mann [Ge80]
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Elementary processes such as the scattering of two particles off each other or
the decay of a single particle are nowadays commonly depicted by Feynman
diagrams. Originally, these diagrams were introduced by Feynman as a sort
of shorthand for the individual terms in his calculations of transition matrix
elements Mfi in electromagnetic processes in the framework of quantum elec-
trodynamics (QED). Each symbol in such a space-time diagram corresponds
to a term in the matrix element. The meaning of the individual terms and
the links between them are fixed by the Feynman rules. Similarly to the QED
rules, corresponding prescriptions exist for the calculation of weak and strong
processes as well, in quantum chromodynamics (QCD). We will not use such
diagrams for quantitative calculations, since this requires knowledge of rel-
ativistic field theory. Instead, they will serve as pictorial illustrations of the
processes that occur. We will therefore merely treat a few examples below
and explain some of the definitions and rules.

Figure 4.5 shows some typical diagrams. We use the convention that the
time axis runs upwards and the space axis from left to right. The straight
lines in the graphs correspond to the wave functions of the initial and final
fermions. Antiparticles (in our examples: the positron e+, the positive muon
μ+ and the electron antineutrino νe) are symbolised by arrows pointing back-
wards in time; photons by wavy lines; heavy vector bosons by dashed lines;
and gluons by corkscrew-like lines.

As we mentioned in Chap. 1, the electromagnetic interaction between
charged particles proceeds via photon exchange. Figure 4.5a depicts schemat-
ically the elastic scattering of an electron off a positron. The interaction pro-
cess corresponds to a photon being emitted by the electron and absorbed
by the positron. Particles appearing neither in the initial nor in the final
state, such as this exchanged photon, are called virtual particles. Because of
the uncertainty principle, virtual particles do not have to satisfy the energy-
momentum relation E2 = p2c2 +m2c4. This may be interpreted as meaning
that the exchanged particle has a mass different from that of a free (real)
particle, or that energy conservation is violated for a brief period of time.

Points at which three or more particles meet are called vertices. Each
vertex corresponds to a term in the transition matrix element which includes
the structure and strength of the interaction. In (a), the exchanged photon
couples to the charge of the electron at the left vertex and to that of the
positron at the right vertex. For each vertex the transition amplitude contains
a factor which is proportional to e, i. e.,

√
α.

Figure 4.5b represents the annihilation of an electron-positron pair. A
photon is created as an intermediate state which then decays into a negatively
charged μ− and its positively charged antiparticle, a μ+. Figure 4.5c shows
a slightly more complicated version of the same process. Here, the photon,
by vacuum polarisation, is briefly transformed into an intermediate state
made up of an e+e− pair. This and additional, more complicated, diagrams
contributing to the same process are called higher-order diagrams.
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The transition matrix element includes the superposition of amplitudes of
all diagrams leading to the same final state. Because the number of vertices
is greater in higher-order diagrams these graphs include higher powers of α.
The amplitude of diagram (b) is proportional to α, while diagram (c)’s is
proportional to α2. The cross-section for conversion of an electron-positron
pair into a μ+μ− pair is therefore given to a good approximation by diagram
(b). Diagram (c) and other diagrams of even higher order produce only small
corrections to (b).

Figure 4.5d shows electron-positron annihilation followed by muon pair
production in a weak interaction proceeding through exchange of the neu-
tral, heavy vector boson Z0. In Fig. 4.5e, we see a neutron transform into
a proton via β-decay in which it emits a negatively charged heavy vector
boson W− which subsequently decays into an electron and antineutrino νe.
Figure 4.5f depicts a strong interaction process between two quarks q and q′

which exchange a gluon, the field quantum of the strong interaction.
In weak interactions, a heavy vector boson is exchanged which couples to

the “weak charge” g and not to the electric charge e. Accordingly, Mfi ∝
g2 ∝ αw. In strong interactions the gluons which are exchanged between the
quarks couple to the “colour charge” of the quarks, Mfi ∝

√
αs ·

√
αs = αs.

W−
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n
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Fig. 4.5. Feynman diagrams for the electromagnetic (a, b, c), weak (d, e) and
strong interactions (f).
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The exchange particles contribute a propagator term to the transition
matrix element. This contribution has the general form

1
Q2 +M2c2

. (4.23)

Here Q2 is the square of the four-momentum (cf. 5.3 and 6.3) which is trans-
ferred in the interaction and M is the mass of the exchange particle. In the
case of a virtual photon, this results in a factor 1/Q2 in the amplitude and
1/Q4 in the cross-section. In the weak interaction, the large mass of the ex-
changed vector boson causes the cross-section to be much smaller than that
of the electromagnetic interaction — although at very high momentum trans-
fers, of the order of the masses of the vector bosons, the two cross-sections
become comparable in size.

Problems
1. Cross-section

Deuterons with an energy Ekin = 5MeV are perpendicularly incident upon a
tritium target, which has a mass occupation density μt = 0.2 mg/cm2, so as to
investigate the reaction 3H(d, n)4He.
a) How many neutrons per second pass through a detector with a reception

area of A = 20 cm2 which is at a distance R = 3 m from the target and an
angle θ=30◦ to the deuteron beam direction, if the differential cross-section
dσ/dΩ at this angle is 13mb/sr and the deuteron current applied to the
target is Id = 2μA?

b) How many neutrons per second does the detector receive if the target is tilted
so that the same deuteron current now approaches it at 80◦ instead of 90◦?

2. Absorption length
A particle beam is incident upon a thick layer of an absorbing material (with
n absorbing particles per unit volume). How large is the absorption length, i.e.,
the distance over which the intensity of the beam is reduced by a factor of 1/e
for the following examples?
a) Thermal neutrons (E ≈ 25 meV) in cadmium ( = 8.6 g/cm3, σ =

24 506 barn).
b) Eγ = 2 MeV photons in lead ( = 11.3 g/cm3, σ = 15.7 barn/atom).
c) Antineutrinos from a reactor in earth ( = 5 g/cm3, σ ≈ 10−19 barn/electron;

interactions with nuclei may be neglected; Z/A ≈ 0.5).
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In this chapter we shall study nuclear sizes and shapes. In principle, this in-
formation may be obtained from scattering experiments (e. g., scattering of
protons or α particles) and when Rutherford discovered that nuclei have a
radial extent of less than 10−14 m, he employed α scattering. In practice, how-
ever, there are difficulties in extracting detailed information from such exper-
iments. Firstly, these projectiles are themselves extended objects. Therefore,
the cross-section reflects not only the structure of the target, but also that
of the projectile. Secondly, the nuclear forces between the projectile and the
target are complex and not well understood.

Electron scattering is particularly valuable for investigating small objects.
As far as we know electrons are point-like objects without any internal struc-
ture. The interactions between an electron and a nucleus, nucleon or quark
take place via the exchange of a virtual photon — this may be very accu-
rately calculated inside quantum electrodynamics (QED). These processes are
in fact manifestations of the well known electromagnetic interaction, whose
coupling constant α ≈ 1/137 is much less than one. This last means that
higher order corrections play only a tiny role.

5.1 Kinematics of Electron Scattering

In electron scattering experiments one employs highly relativistic particles.
Hence it is advisable to use four-vectors in kinematical calculations. The zero
component of space–time four-vectors is time, the zero component of four-
momentum vectors is energy:

x = (x0, x1, x2, x3) = (ct,x) ,
p = (p0, p1, p2, p3) = (E/c,p) . (5.1)

Three-vectors are designated by bold-faced type to distinguish them from
four-vectors. The Lorentz-invariant scalar product of two four-vectors a and
b is defined by

a · b = a0b0 − a1b1 − a2b2 − a3b3 = a0b0 − a · b . (5.2)

In particular, this applies to the four-momentum squared:
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p2 =
E2

c2
− p2 . (5.3)

This squared product is equal to the square of the rest mass m (multiplied
by c2). This is so since a reference frame in which the particle is at rest can
always be found and there p = 0, and E = mc2. The quantity

m =
√
p2 /c (5.4)

is called the invariant mass. From (5.3) and (5.4) we obtain the relativistic
energy-momentum relation:

E2 − p2c2 = m2c4 (5.5)

and thus
E ≈ |p| c if E � mc2 . (5.6)

For electrons, this approximation is already valid at energies of a few MeV.

Consider the scattering of an electron with four-momentum p off a particle with
four-momentum P (Fig. 5.1). Energy and momentum conservation imply that the
sums of the four-momenta before and after the reaction are identical:

p + P = p′ + P ′ , (5.7)

or squared:
p2 + 2pP + P 2 = p′2 + 2p′P ′ + P ′2 . (5.8)

In elastic scattering the invariant masses me and M of the colliding particles are
unchanged. Hence from:

p2 = p′2 = m2
ec

2 and P 2 = P ′2 = M2c2 (5.9)

it follows that:
p · P = p′ · P ′ . (5.10)

Usually only the scattered electron is detected and not the recoiling particle. In
this case the relation:

Electron

E, p

Nucleus

E'
P

, P'

E',p'

θ

Fig. 5.1. Kinematics of elastic electron-nucleus scattering.
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p · P = p′ · (p + P − p′) = p′p + p′P − m2
ec

2 (5.11)

is used. Consider the laboratory frame where the particle with four-momentum P
is at rest before the collision. Then the four-momenta can be written as:

p = (E/c, p) p′ = (E′/c, p′) P = (Mc,0) P ′ = (E′
P /c, P ′) . (5.12)

Hence (5.11) yields:

E · Mc2 = E′E − pp′c2 + E′Mc2 − m2
ec

4 . (5.13)

At high energies, m2
ec

4 may be neglected and E ≈ |p| · c (Eq. 5.6) can be safely
used. One thus obtains a relation between between the angle and the energy:

E · Mc2 = E′E · (1 − cos θ) + E′ · Mc2 . (5.14)

In the laboratory system, the energy E′ of the scattered electron is:

E′ =
E

1 + E/Mc2 · (1 − cos θ)
. (5.15)

The angle θ through which the electron is deflected is called the scattering
angle. The recoil which is transferred to the target is given by the difference
E − E′. In elastic scattering, a one to one relationship (5.15) exists between
the scattering angle θ and the energy E′ of the scattered electron; (5.15) does
not hold for inelastic scattering.

The angular dependence of the scattering energy E′ is described by the
term (1−cos θ) multiplied by E/Mc2. Hence the recoil energy of the target
increases with the ratio of the relativistic electron mass E/c2 to the target
mass M . This is in accordance with the classical laws of collision.

In electron scattering at the relatively low energy of 0.5 GeV off a nucleus
with mass number A= 50 the scattering energy varies by only 2 % between
forward and backward scattering. The situation is very different for 10 GeV-
electrons scattering off protons. The scattering energy E′ then varies between
10 GeV (θ ≈ 0◦) and 445 MeV (θ=180◦) (cf. Fig. 5.2).

E = 0.5 GeV      A=50
E = 10 GeV       A=50

E = 0.5 GeV      A =1

E = 10 GeV       A =1

0
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0.8

1
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E
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E

0˚ 50˚ 100˚ 150˚
θ

Fig. 5.2. Angular dependence
of the scattering energy of elec-
trons normalised to beam en-
ergy, E′/E, in elastic electron-
nucleus scattering. The curves
show this dependence for two dif-
ferent beam energies (0.5 GeV
and 10 GeV) and for two nuclei
with different masses (A = 1 and
A = 50).
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5.2 The Rutherford Cross-Section

We will now consider the cross-section for an electron with energy E scatter-
ing off an atomic nucleus with charge Ze. For the calculation of the reaction
kinematics to be sufficiently precise, it must be both relativistic and quantum
mechanical. We will approach this goal step by step. Firstly, we introduce the
Rutherford scattering formula. By definition, this formula yields the cross-
section up to spin effects. For heavy nuclei and low energy electrons, the recoil
can, from (5.15), be neglected. In this case, the energy E and the modulus of
the momentum p are the same before and after the scattering. The kinematics
can be calculated in the same way as, for example, the hyperbolic trajectory
of a comet which is deflected by the sun as it traverses the solar system. As
long as the radius of the scattering centre (nucleus, sun) is smaller than the
closest approach of the projectile (electron, comet) then the spatial extension
of the scattering centre does not affect this purely classical calculation. This
leads to the Rutherford formula for the scattering of a particle with charge
ze and kinetical energy Ekin on a target nucleus with charge Ze:

(
dσ
dΩ

)

Rutherford

=
(zZe2)2

(4πε0)2 · (4Ekin)2 sin4 θ
2

. (5.16)

Exactly the same equation is obtained by a calculation of this cross-section
in non-relativistic quantum mechanics using Fermi’s golden rule. This we will
now demonstrate. To avoid unnecessary repetitions we will consider the case
of a central charge with finite spatial distribution.

Scattering off an extended charge distribution. Consider the case of a
target so heavy that the recoil is negligible. We can then use three-momenta.
If Ze is small, i. e. if:

Zα 1 , (5.17)

the Born approximation can be applied, and the wave functions ψi and ψf of
the incoming and of the outgoing electron can be described by plane waves:

ψi =
1√
V

eipx/� ψf =
1√
V

eip′x/� . (5.18)

We can sidestep any difficulties related to the normalisation of the wave
functions by considering only a finite volume V . We need this volume to
be large compared to the scattering centre, and also large enough that the
discrete energy states in this volume can be approximated by a continuum.
The physical results have, of course, to be independent of V .

We consider an electron beam with a density of na particles per unit
volume. With the volume of integration chosen to be sufficiently large, the
normalisation condition is given by:

∫

V

|ψi|2 dV = na · V where V =
Na

na
, (5.19)
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i.e. V is the normalisation volume that must be chosen for a single beam
particle.

According to (4.20), the reaction rate W is given by the product of the
cross-section σ and the beam particle velocity va divided by the above volume.
When applying the golden rule (4.19), we get:

σva

V
= W =

2π
�

|〈ψf |Hint|ψi〉|2
dn
dEf

. (5.20)

Here, Ef is the total energy (kinetic energy and rest mass) of the final state.
Since we neglect the recoil and since the rest mass is a constant, dEf = dE′ =
dE.

The density n of possible final states in phase space (cf. 4.16) is:

dn(|p′|) =
4π|p′|2d|p′| · V

(2π�)3
. (5.21)

Therefore the cross-section for the scattering of an electron into a solid angle
element dΩ is:

dσ · va · 1
V

=
2π
�

|〈ψf |Hint|ψi〉|2
V |p′|2d|p′|
(2π�)3dEf

dΩ . (5.22)

The velocity va can be replaced, to a good approximation, by the velocity
of light c. For large electron energies, |p′| ≈ E′/c applies, and we obtain:

dσ
dΩ

=
V 2E′2

(2π)2(�c)4
|〈ψf |Hint|ψi〉|2 . (5.23)

The interaction operator for a charge e in an electric potential φ is Hint =
eφ. Hence, the matrix element is:

〈ψf |Hint|ψi〉 =
e

V

∫
e−ip′x/� φ(x) eipx/�d3x . (5.24)

Defining the momentum transfer q by:

q = p − p′, (5.25)

we may re-write the matrix element as:

〈ψf |Hint|ψi〉 =
e

V

∫
φ(x) eiqx/�d3x . (5.26)
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Green’s theorem permits us to use a clever trick here: for two arbitrarily chosen
scalar fields u and v, which fall off fast enough at large distances, the following
equation holds for a sufficiently large integration volume:

∫
(u�v − v�u) d3x = 0 , with � = ∇2 . (5.27)

Inserting:

eiqx/� =
−�

2

|q|2 · �eiqx/� (5.28)

into (5.26), we may rewrite the matrix element as:

〈ψf |Hint|ψi〉 =
−e�

2

V |q|2
∫

�φ(x) eiqx/� d3x . (5.29)

The potential φ(x) and the charge density (x) are related by Poisson’s equation:

�φ(x) =
−(x)

ε0
. (5.30)

In the following, we will assume the charge density (x) to be static, i. e. indepen-
dent of time.

We now define a charge distribution function f by 
(x) = Zef(x) which
satisfies the normalisation condition

∫
f(x) d3x = 1, and re-write the matrix

element as:

〈ψf |Hint|ψi〉 =
e�2

ε0 · V |q|2
∫

(x) eiqx/�d3x

=
Z · 4πα�

3c

|q|2 · V

∫
f(x) eiqx/�d3x . (5.31)

The integral

F (q) =
∫

eiqx/�f(x)d3x (5.32)

is the Fourier transform of the charge function f(x), normalised to the total
charge. It is called the form factor of the charge distribution. The form factor
contains all the information about the spatial distribution of the charge of
the object being studied. We will discuss form factors and their meaning in
the following chapters in some detail.

To calculate the Rutherford cross section we, by definition, neglect the
spatial extension — i. e., we replace the charge distribution by a δ-function.
Hence, the form factor is fixed to unity. By inserting the matrix element into
(5.23) we obtain:

(
dσ
dΩ

)

Rutherford

=
4Z2α2(�c)2E′2

|qc|4 . (5.33)
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The 1/q4-dependence of the electromagnetic cross-section implies very low
event rates for electron scattering with large momentum transfers. The event
rates drop off so sharply that small measurement errors in q can significantly
falsify the results.

Since recoil is neglected in Rutherford scattering, the electron energy and the
magnitude of its momentum do not change in the interaction:

E = E′ , |p| = |p′| . (5.34)

The magnitude of the momentum transfer q is therefore:

qṕ
θ/2

p

|q| = 2 · |p| sin θ

2
. (5.35)

If we recall that E = |p| · c is a good approximation we obtain the relativistic
Rutherford scattering formula:

(
dσ

dΩ

)

Rutherford

=
Z2α2(�c)2

4E2 sin4 θ
2

. (5.36)

The classical Rutherford formula (5.16) may be obtained from (5.33) by apply-
ing nonrelativistic kinematics: p = mv, Ekin = mv2/2 and E′ ≈ mc2.

Field-theoretical considerations. The sketch on the right is a pictorial
representation of a scattering process. In the

q

ṕ

p

e

Ze

language of field theory, the electromagnetic
interaction of an electron with the charge
distribution is mediated by the exchange of
a photon, the field quantum of this interac-
tion. The photon which does not itself carry
any charge, couples to the charges of the two
interacting particles. In the transition ma-
trix element, this yields a factor Ze · e and
in the cross-section we have a term (Ze2)2.
The three-momentum transfer q defined in
(5.25) is the momentum transferred by the
exchanged photon. Hence the reduced de-Broglie wavelength of the photon
is:

λ– =
�

|q| =
�

|p| ·
1

2 sin θ
2

. (5.37)
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If λ– is considerably larger than the spatial extent of the target particle,
internal structures cannot be resolved, and the target particle may be consid-
ered to be point-like. The Rutherford cross-section from (5.33) was obtained
for this case.

In the form (5.33), the dependence of the cross-section on the momen-
tum transfer is clearly expressed. To lowest order the interaction is mediated
by the exchange of a photon. Since the photon is massless, the propagator
(4.23) in the matrix element is 1/Q2, or 1/|q|2 in a non-relativistic approxi-
mation. The propagator enters the cross-section squared which leads to the
characteristic fast 1/|q|4 fall-off of the cross-section.

If the Born approximation condition (5.17) no longer holds, then our sim-
ple picture must be modified. Higher order corrections (exchange of several
photons) must be included and more complicated calculations (phase shift
analyses) are necessary.

5.3 The Mott Cross-Section

Up to now we have neglected the spins of the electron and of the target.
At relativistic energies, however, the Rutherford cross-section is modified by
spin effects. The Mott cross-section, which describes electron scattering and
includes effects due to the electron spin, may be written as:

(
dσ
dΩ

)*

Mott

=
(

dσ
dΩ

)

Rutherford

·
(

1 − β2 sin2 θ

2

)
, with β =

v

c
. (5.38)

The asterisk indicates that the recoil of the nucleus has been neglected in
deriving this equation. The expression shows that, at relativistic energies,
the Mott cross-section drops off more rapidly at large scattering angles than
does the Rutherford cross-section. In the limiting case of β → 1, and using
sin2x+ cos2 x = 1, the Mott cross-section can be written in a simpler form:
(

dσ
dΩ

)*

Mott

=
(

dσ
dΩ

)

Rutherford

· cos2
θ

2
=

4Z2α2(�c)2E′2

|qc|4 cos2
θ

2
. (5.39)

The additional factor in (5.39) can be understood by considering the
extreme case of scattering through 180◦. For relativistic particles in the limit
β → 1, the projection of their spin s on the direction of their motion p/|p| is
a conserved quantity. This conservation law follows from the solution of the
Dirac equation in relativistic quantum mechanics [Go86]. It is usually called
conservation of helicity rather than conservation of the projection of the spin.
Helicity is defined by:

h =
s · p

|s| · |p| . (5.40)

Particles with spin pointing in the direction of their motion have helicity +1,
particles with spin pointing in the opposite direction have helicity −1.
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Fig. 5.3. Helicity, h = s · p/(|s| · |p|), is conserved in the β → 1 limit. This means
that the spin projection on the z-axis would have to change its sign in scattering
through 180◦. This is impossible if the target is spinless, because of conservation of
angular momentum.

Figure 5.3 shows the kinematics of scattering through 180◦. We here
choose the momentum direction of the incoming electron as the axis of quan-
tisation ẑ. Because of conservation of helicity, the projection of the spin on
the ẑ-axis would have to turn over (spin-flip). This, however, is impossible
with a spinless target, because of conservation of total angular momentum.
The orbital angular momentum � is perpendicular to the direction of motion
ẑ. It therefore cannot cause any change in the z-component of the angular
momentum. Hence in the limiting case β → 1, scattering through 180◦ must
be completely suppressed.

If the target has spin, the spin projection of the electron can be changed,
as conservation of angular momentum can be compensated by a change in
the spin direction of the target. In this case, the above reasoning is not valid,
and scattering through 180◦ is possible.

5.4 Nuclear Form Factors

In actual scattering experiments with nuclei or nucleons, we see that the
Mott cross-sections agree with the experimental cross-sections only in the
limit |q| → 0. At larger values of |q|, the experimental cross-sections are
systematically smaller. The reason for this lies in the spatial extension of
nuclei and nucleons. At larger values of |q|, the reduced wavelength of the
virtual photon decreases (5.37), and the resolution increases. The scattered
electron no longer sees the total charge, but only parts of it. Therefore, the
cross-section decreases.
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As we have seen, the spatial extension of a nucleus is described by a form
factor (5.32). In the following, we will restrict the discussion to the form
factors of spherically symmetric systems which have no preferred orientation
in space. In this case, the form factor only depends on the momentum transfer
q. We symbolise this fact by writing the form factor as F (q2).

Experimentally, the magnitude of the form factor is determined by the
ratio of the measured cross-section to the Mott cross-section:

(
dσ
dΩ

)

exp.

=
(

dσ
dΩ

)*

Mott

·
∣
∣F (q2)

∣
∣2 . (5.41)

One therefore measures the cross-section for a fixed beam energy at var-
ious angles (and thus different values of |q|) and divides by the calculated
Mott cross-section.

In Fig. 5.4, a typical experimental set-up for the measurement of form
factors is depicted. The electron beam is provided by a linear accelerator
and is directed at a thin target. The scattered electrons are measured in a
magnetic spectrometer. In an analysing magnet the electrons are deflected
according to their momentum, and are then detected in wire chambers. The
spectrometer can be rotated around the target in order to allow measurements
at different angles θ.

Examples of form factors. The first measurements of nuclear form factors
were carried out in the early fifties at a linear accelerator at Stanford Uni-
versity, California. Cross-sections were measured for a large variety of nuclei
at electron energies of about 500 MeV.

An example of one of the first measurements of form factors can be seen
in Fig. 5.5. It shows the 12C cross-section measured as a function of the scat-
tering angle θ. The fast fall-off of the cross-section at large angles corresponds
to the 1/|q|4-dependence. Superimposed is a typical diffraction pattern asso-
ciated with the form factor. It has a minimum at θ ≈ 51◦ or |q|/� ≈ 1.8 fm−1.
We want to now discuss this figure and describe what information about the
nucleus can be extracted from it.

As we have seen, the form factor F (q2) is under certain conditions (neg-
ligible recoil, Born approximation) the Fourier transform of the charge dis-
tribution f(x):

F (q2) =
∫

eiqx/�f(x) d3x . (5.42)

For spherically symmetric cases f only depends upon the radius r = |x|.
Integration over the total solid angle then yields:

F (q2) = 4π
∫
f(r)

sin |q|r/�
|q|r/� r2 dr, (5.43)

with the normalisation:
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1 =
∫
f(x) d3x =

∫ ∞

0

∫ +1

−1

∫ 2π

0

f(r) r2 dφd cosϑ dr = 4π
∫ ∞

0

f(r) r2 dr .

(5.44)
In principle, the radial charge distribution could be determined from the

inverse Fourier transform, using the q2–dependence of the experimental form
factor:

f(r) =
1

(2π)3

∫
F (q2) e−iqx/� d3q . (5.45)

In practice, however, the form factor can be measured only over a limited
range of momentum transfer |q|. The limitation is due to the finite beam
energy available and the sharp drop in the cross-section for large momentum
transfer. One therefore chooses various parametrisations of f(r), determines

Spectrometer A
Spectrometer B

Spectrometer C

Detector
system

Beam tube

Shielding

Clam
Dipole

Dipole

Magnet support

Scattering chamber

Turn table Beam

Dipole

3-Spectrometer facility
at MAMI accelerator

Fig. 5.4. Experimental set-up for the measurement of electron scattering off pro-
tons and nuclei at the electron accelerator MAMI-B (Mainzer Microtron). The
maximum energy available is 820 MeV. The figure shows three magnetic spectrom-
eters. They can be used individually to detect elastic scattering or in coincidence
for a detailed study of inelastic channels. Spectrometer A is shown in cutaway
view. The scattered electrons are analysed according to their momentum by two
dipole magnets supplemented by a system of detectors made up of wire chambers
and scintillation counters. The diameter of the rotating ring is approximately 12m.
(Courtesy of Arnd P. Liesenfeld (Mainz), who produced this picture)
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Fig. 5.5. Measurement of the form fac-
tor of 12C by electron scattering (from
[Ho57]). The figure shows the differential
cross-section measured at a fixed beam
energy of 420 MeV, at 7 different scatter-
ing angles. The dashed line corresponds
to scattering of a plane wave off an ho-
mogeneous sphere with a diffuse surface
(Born approximation). The solid line cor-
responds to an exact phase shift analysis
which was fitted to the experimental data.

the theoretical prediction for F (q2) and varies the parameters to obtain a
best fit between theory and the measured value of F (q2).

The form factor can be calculated analytically for certain charge distri-
butions described by some simple radial functions f(r). The form factors for
some special cases of f(r) are listed in Table 5.1, and are depicted in Fig. 5.6.
A charge distribution which drops off gently corresponds to a smooth form
factor. The more extended the charge distribution, the stronger the fall-off
of the form factor with q2. On the other hand if the object is small, the
form factor falls off slowly. In the limit of a point-like target, the form factor
approaches unity.

Scattering off an object with a sharp surface generally results in well-
defined diffraction maxima and minima. For a homogeneous sphere with ra-
dius R, for example, a minimum is found at

|q| ·R
�

≈ 4.5 . (5.46)

The location of the minima thus tells us the size of the scattering nucleus.
In Fig. 5.5 we saw that the minimum in the cross-section of electron

scattering off 12C (and thus the minimum in the form factor) is found at
|q|/� ≈ 1.8 fm−1. One concludes that the carbon nucleus has a radius R =
4.5 �/|q| ≈ 2.5 fm.

Figure 5.7 shows the result of an experiment comparing the two isotopes
40Ca and 48Ca. This picture is interesting in several respects:

– The cross-section was measured over a large range of |q|. Within this range,
it changes by seven orders of magnitude.1

1 Even measurements over 12 (!) orders of magnitude have been carried out (cf.,
e. g., [Si79]).
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Table 5.1. Connection between charge distributions and form factors for some
spherically symmetric charge distributions in Born approximation.

Charge distribution f(r) Form Factor F (q2)

point δ(r)/4π 1 constant

exponential (a3/8π) · exp (−ar)
(
1 + q2/a2

�
2
)−2

dipole

Gaussian
(
a2/2π

)3/2 · exp
(
−a2r2/2

)
exp

(
−q2/2a2

�
2
)

Gaussian

homogeneous
sphere

{
3/4πR3 for r ≤ R

0 for r > R
3 α−3 (sin α − α cos α)

with α = |q|R/�
oscillating

ρ(r)  |F(q 2)| Example

Electronconstantpointlike

Protondipoleexponential

6Li

–

40Ca

gauss

oscillating

gauss

homogeneous
sphere

sphere with
a diffuse
surface

r |q|

oscillating

Fig. 5.6. Relation between the radial charge distribution (r) and the correspond-
ing form factor in Born approximation. A constant form factor corresponds to a
pointlike charge (e. g., an electron); a dipole form factor to a charge distribution
which falls off exponentially (e. g., a proton); a Gaussian form factor to a Gaussian
charge distribution (e. g., 6Li nucleus); and an oscillating form factor corresponds
to a homogeneous sphere with a more or less sharp edge. All nuclei except for the
lightest ones, display an oscillating form factor.
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Fig. 5.7. Differential cross-sections for electron scattering off the calcium isotopes
40Ca and 48Ca [Be67]. For clarity, the cross-sections of 40Ca and 48Ca have been
multiplied by factors of 10 and 10−1, respectively. The solid lines are the charge
distributions obtained from a fit to the data. The location of the minima shows
that the radius of 48Ca is larger than that of 40Ca.

– Not one but three minima are visible in the diffraction pattern. This be-
haviour of the cross-section means that F (q2) and the charge distribution

(r) can be determined very accurately.

– The minima of 48Ca are shifted to slightly lower values of |q| than those
of 40Ca. This shows that 48Ca is larger.

Information about the nuclear radius can be obtained not only from the
location of the minima of the form factor, but also from its behaviour for
q2 → 0. If the wavelength is considerably larger than the nuclear radius R,
then:

|q| ·R
�

 1 , (5.47)

and F (q2) can from (5.42) be expanded in powers of |q|:
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F (q2) =
∫
f(x)

∞∑

n=0

1
n!

(
i|q||x| cosϑ

�

)n

d3x with ϑ =<) (x, q)

=
∫ ∞

0

∫ +1

−1

∫ 2π

0

f(r)

[

1 − 1
2

(
|q|r
�

)2

cos2 ϑ+ · · ·
]

dφ d cosϑ r2dr

= 4π
∫ ∞

0

f(r) r2dr − 1
6

q2

�2
4π

∫ ∞

0

f(r) r4dr + · · · . (5.48)

Defining the mean square charge radius according to the normalisation
condition (5.44) by:

〈r2〉 = 4π
∫ ∞

0

r2 · f(r) r2dr , (5.49)

then

F (q2) = 1 − 1
6

q2〈r2〉
�2

+ · · · . (5.50)

Hence it is necessary to measure the form factor F (q2) down to very small
values of q2 in order to determine 〈r2〉. The following equation holds:

〈r2〉 = −6 �
2 dF (q2)

dq2

∣
∣
∣
∣
q2 =0

. (5.51)

Charge distributions of nuclei. Many high-precision measurements of
this kind have been carried out at different accelerators since the middle of
the 1950’s. Radial charge distributions 
(r) have been determined from the
results. The following has been understood:

4
He

Ca
Ni Sm Pb

0 2 4 6 8

0.05

0.10

ρ[e / fm3 ]

r [fm]

Fig. 5.8. Radial charge distributions of various nuclei. These charge distributions
can be approximately described by the Fermi distribution (5.52), i. e., as spheres
with diffuse surfaces.
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– Nuclei are not spheres with a sharply defined surface. In their interior,
the charge density is nearly constant. At the surface the charge density
falls off over a relatively large range. The radial charge distribution can be
described to good approximation by a Fermi function with two parameters


(r) =

(0)

1 + e(r−c)/a
. (5.52)

This is shown in Fig. 5.8 for different nuclei.
– The constant c is the radius at which 
(r) has decreased by one half.

Empirically, for larger nuclei, c and a are measured to be:

c = 1.07 fm ·A1/3 , a = 0.54 fm . (5.53)

– From this charge density, the mean square radius can be calculated. Ap-
proximately, for medium and heavy nuclei:

〈r2〉1/2 = r0 ·A1/3 where r0 = 0.94 fm . (5.54)

The nucleus is often approximated by a homogeneously charged sphere.
The radius R of this sphere is then quoted as the nuclear radius. The
following connection exists between this radius and the mean square radius:

R2 =
5
3
〈r2〉 . (5.55)

Quantitatively we have:

R = 1.21 ·A1/3 fm . (5.56)

This definition of the radius is used in the mass formula (2.8).
– The surface thickness t is defined as the thickness of the layer over which

the charge density drops from 90 % to 10 % of its maximal value:

t = r(�/�0=0.1) − r(�/�0=0.9) . (5.57)

Its value is roughly the same for all heavy nuclei, namely:

t = 2a · ln 9 ≈ 2.40 fm . (5.58)

t
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– The charge density 
(0) at the centre of the nucleus decreases slightly
with increasing mass number. If one takes the presence of the neutrons
into account by multiplying by A/Z one finds an almost identical nuclear
density in the nuclear interior for nearly all nuclei. For “infinitely large”
nuclear matter, it would amount to2


n ≈ 0.17 nucleons/fm3 . (5.59)

This corresponds to a value of c=1.12 fm ·A1/3 in (5.53).
– Some nuclei deviate from a spherical shape and possess ellipsoidal defor-

mations. In particular, this is found in the lanthanides (the “rare earth”
elements). Their exact shape cannot be determined by elastic electron scat-
tering. Only a rather diffuse surface can be observed.

– Light nuclei such as 6,7Li, 9Be, and in particular 4He, are special cases.
Here, no constant density plateau is formed in the nuclear interior, and the
charge density is approximately Gaussian.

This summary describes only the global shape of nuclear charge distributions.
Many details specific to individual nuclei are known, but will not be treated
further here [Fr82].

5.5 Inelastic Nuclear Excitations

In the above we have mainly discussed elastic scattering off nuclei. In this case
the initial and final state particles are identical. The only energy transferred is
recoil energy and the target is not excited to a higher energy level. For fixed
scattering angles, the incoming and scattering energies are then uniquely
connected by (5.15).

The measured energy spectrum of the scattered electrons, at a fixed scat-
tering angle θ, contains events where the energy transfer is larger than we
would expect from recoil. These events correspond to inelastic reactions.

Figure 5.9 shows a high-resolution spectrum of electrons with an initial
energy of 495 MeV, scattered off 12C and detected at a scattering angle
of 65.4◦. The sharp peak at E′ ≈ 482 MeV is due to elastic scattering off
the 12C nucleus. Below this energy, excitations of individual nuclear energy
levels are clearly seen. The prominent maximum at E′ ≈ 463 MeV is caused
by the giant dipole resonance (Sect. 18.2). At even lower scattering energies
a broad distribution from quasi-elastic scattering off the nucleons bound in
the nucleus (Sect. 6.2) is seen.

2 This quantity is usually denoted by 0 in the literature. To avoid any confusion
with the charge density we have used the symbol n here.
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Fig. 5.9. Spectrum of electron scattering off 12C. The sharp peaks correspond to
elastic scattering and to the excitation of discrete energy levels in the 12C nucleus by
inelastic scattering. The excitation energy of the nucleus is given for each peak. The
495 MeV electrons were accelerated with the linear accelerator MAMI-B in Mainz
and were detected using a high-resolution magnetic spectrometer (cf. Fig. 5.4) at a
scattering angle of 65.4◦. (Courtesy of Th. Walcher and G. Rosner, Mainz)
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Problems
1. Kinematics of electromagnetic scattering

An electron beam with energy Ee is elastically scattered off a heavy nucleus.
a) Calculate the maximal momentum transfer.
b) Calculate the momentum and energy of the backwardly scattered nucleus in

this case.
c) Obtain the same quantities for the elastic scattering of photons with the

same energy (nuclear Compton effect).

2. Wavelength
Fraunhofer diffraction upon a circular disc with diameter D produces a ring
shaped diffraction pattern. The first minimum appears at θ = 1.22 λ/D.
Calculate the angular separation of the diffraction minima of α particles with
energy Ekin = 100 MeV scattered off a 56Fe nucleus. The nucleus should be
considered as an impenetrable disc.

3. Rutherford scattering
α particles with Ekin =6 MeV from a radioactive source are scattered off 197Au
nuclei. At which scattering angle are deviations from the cross-section (5.16) to
be expected?

4. Form factor
Instead of α particles with Ekin =6 MeV we now consider the scattering of elec-
trons with the same de Broglie wavelength off gold. How large must the kinetic
energy of the electrons be? How many maxima and minima will be visible in
the angular distribution (cf. Fig. 5.7)?
Since the recoil is small in this case, we may assume that the kinematical quan-
tities are the same in both the centre of mass and laboratory frames.

5. Elastic scattering of X-rays
X-rays are scattered off liquid helium. Which charge carriers in the helium atom
are responsible for the scattering? Which of the form factors of Fig. 5.6 corre-
sponds to this scattering off helium?

6. Compton scattering
Compton scattering off bound electrons can be understood in analogy to quasi-
elastic and deep inelastic scattering. Gamma rays from positronium annihilation
are scattered off helium atoms (binding energy of the “first” electron: 24 eV).
Calculate the angular spread of the Compton electrons that are measured in
coincidence with photons that are scattered by θγ = 30◦.



6 Elastic Scattering off Nucleons

6.1 Form Factors of the Nucleons

Elastic electron scattering off the lightest nuclei, hydrogen and deuterium,
yields information about the nuclear building blocks, the proton and the
neutron. Certain subtleties have, however, to be taken into account in any
discussion of these experiments.

Recoil. As we will soon see, nucleons have a radius of about 0.8 fm. Their
study therefore requires energies from some hundred MeV up to several GeV.
Comparing these energies with the mass of the nucleon M ≈ 938 MeV/c2,
we see that they are of the same order of magnitude. Hence the target recoil
can no longer be neglected. In the derivation of the cross-sections (5.33) and
(5.39) we “prepared” for this by using E′ rather than E. On top of this,
however, the phase space density dn/dEf in (5.20) must be modified. We so
eventually find an additional factor of E′/E in the Mott cross-section [Pe87]:

(
dσ
dΩ

)

Mott

=
(

dσ
dΩ

)*

Mott

· E
′

E
. (6.1)

Since the energy loss of the electron due to the recoil is now signifi-
cant, it is no longer possible to describe the scattering in terms of a three-
momentum transfer. Instead the four-momentum transfer, whose square is
Lorentz-invariant:

q2 = (p− p′)2 = 2m2
ec

2 − 2
(
EE′/c2 − |p||p′| cos θ

)

≈ −4EE′

c2
sin2 θ

2
, (6.2)

must be used. In order to only work with positive quantities we define:

Q2 = −q2 . (6.3)

In the Mott cross-section, q2 must be replaced by q2 or Q2.
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Magnetic moment. We must now not only take the interaction of the
electron with the nuclear charge into account, but also we have to consider
the interaction between the current of the electron and the nucleon’s magnetic
moment.

The magnetic moment of a charged, spin-1/2 particle which does not
possess any internal structure (a Dirac particle) is given by

μ = g · e

2M
· �

2
(6.4)

where M is the mass of the particle and the g= 2 factor is a result of rela-
tivistic quantum mechanics (the Dirac equation). The magnetic interaction
is associated with a flip of the spin of the nucleon. An argument analogous
to that of Sect. 5.3 is applicable here: scattering through 0◦ is not consistent
with conservation of both angular momentum and helicity and scattering
through 180◦ is preferred. The magnetic interaction thus introduces a factor
into the interaction which, analogously to (5.39), contains a factor of sin2 θ

2 .
With sin2 θ

2 = cos2 θ
2 · tan2 θ

2 we obtain for the cross-section:
(

dσ
dΩ

)

point
spin 1/2

=
(

dσ
dΩ

)

Mott

·
[

1 + 2τ tan2 θ

2

]
, (6.5)

where

τ =
Q2

4M2c2
. (6.6)

The 2τ factor can be fairly easily made plausible: the matrix element of
the interaction is proportional to the magnetic moment of the nucleon (and
thus to 1/M) and to the magnetic field which is produced at the target in
the scattering process. Integrated over time, this is then proportional to the
deflection of the electron (i.e., to the momentum transfer Q). These quantities
then enter the cross-section quadratically.

The magnetic term in (6.5) is large at high four-momentum transfers Q2

and if the scattering angle θ is large. This additional term causes the cross-
section to fall off less strongly at larger scattering angles and a more isotropic
distribution is found then the electric interaction alone would produce.

Anomalous magnetic moment. For charged Dirac-particles the g-factor
in (6.4) should be exactly 2, while for neutral Dirac particles the magnetic
moment should vanish. Indeed measurements of the magnetic moments of
electrons and muons yield the value g=2, up to small deviations. These last
are caused by quantum electrodynamical processes of higher order, which are
theoretically well understood.

Nucleons, however, are not Dirac particles since they are made up of
quarks. Therefore their g-factors are determined by their sub-structure. The
values measured for protons and neutrons are:



6.1 Form Factors of the Nucleons 75

μp =
gp
2
μN = +2.79 · μN , (6.7)

μn =
gn
2
μN = −1.91 · μN , (6.8)

where the nuclear magneton μN is:

μN =
e�

2Mp
= 3.1525 · 10−14 MeVT−1 . (6.9)

Charge and current distributions can be described by form factors, just
as in the case of nuclei. For nucleons, two form factors are necessary to
characterise both the electric and magnetic distributions. The cross-section
for the scattering of an electron off a nucleon is described by the Rosenbluth
formula [Ro50]:
(

dσ
dΩ

)
=

(
dσ
dΩ

)

Mott

·
[
G2

E(Q2) + τG2
M(Q2)

1 + τ
+ 2τG2

M(Q2) tan2 θ

2

]
. (6.10)

Here GE(Q2) and GM(Q2) are the electric and magnetic form factors both
of which depend upon Q2. The measured Q2-dependence of the form factors
gives us information about the radial charge distributions and the magnetic
moments. The limiting case Q2 → 0 is particularly important. In this case GE

coincides with the electric charge of the target, normalised to the elementary
charge e; and GM is equal to the magnetic moment μ of the target, normalised
to the nuclear magneton. The limiting values are:

Gp
E(Q2 = 0) = 1 Gn

E(Q2 = 0) = 0
Gp

M(Q2 = 0) = 2.79 Gn
M(Q2 = 0) = −1.91 .

(6.11)

In order to independently determine GE(Q2) and GM(Q2) the cross-
sections must be measured at fixed values of Q2, for various scattering angles
θ (i. e., at different beam energies E). The measured cross-sections are then
divided by the Mott cross-sections. If we display the results as a function of
tan2(θ/2), then the measured points form a straight line (Fig. 6.1), in ac-
cordance with the Rosenbluth formula. GM(Q2) is then determined by the
slope of the line, and the intercept (G2

E + τG2
M)/(1 + τ) at θ = 0 then yields

GE(Q2). If we perform this analysis for various values of Q2 we can obtain
the Q2 dependence of the form factors.

Measurements of the electromagnetic form factors right up to very high
values of Q2 were carried out mainly in the late sixties and early seventies at
accelerators such as the linear accelerator SLAC in Stanford. Figure 6.2 shows
the Q2 dependence of the two form factors for both protons and neutrons.

It turned out that the proton electric form factor and the magnetic form
factors of both the proton and the neutron fall off similarly with Q2. They
can be described to a good approximation by a so-called dipole fit:

G p
E(Q2) =

G p
M(Q2)
2.79

=
G n

M(Q2)
−1.91

= G dipole(Q2)
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Fig. 6.1. Ratio of the measured cross-section and the Mott cross-section σexp/σMott

as a function of tan2θ/2 at a four-momentum transfer of Q2 = 2.5 GeV2/c2 [Ta67].

where G dipole(Q2) =
(

1 +
Q2

0.71 (GeV/c)2

)−2

. (6.12)

The neutron appears from the outside to be electrically neutral and it there-
fore has a very small electric form factor.

= G p       E

= G p /2.79       M

= G n /(-1.91)       M
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Fig. 6.2. Proton and neutron electric and magnetic form factors as functions of
Q2. The data points are scaled by the factors noted in the diagram so that they
coincide and thus more clearly display the global dipole-like behaviour [Hu65].
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We may obtain the nucleons’ charge distributions and magnetic moments
from the Q2 dependence of the form factors, just as we saw could be done for
nuclei. The interpretation of the form factors as the Fourier transform of the
static charge distribution is, however, only correct for small values ofQ2, since
only then are the three- and four-momentum transfers approximately equal.
The observed dipole form factor (6.12) corresponds to a charge distribution
which falls off exponentially (cf. Fig. 5.6):


(r) = 
(0) e−ar with a = 4.27 fm−1 . (6.13)

Nucleons are, we see, neither point-like particles nor homogeneously charged
spheres, but rather quite diffuse systems.

The mean square radii of the charge distribution in the proton and of the
magnetic moment distributions in the proton and the neutron are similarly
large. They may be found from the slope of GE,M(Q2) at Q2 = 0. The dipole
fit yields:

〈r2〉dipole = −6�
2 dG dipole(Q2)

dQ2

∣
∣
∣
∣
Q2=0

=
12
a2

= 0.66 fm2 ,

√
〈r2〉dipole = 0.81 fm . (6.14)

Precise measurements of the form factors at small values of Q2 show slight
deviations from the dipole parametrisation. The slope at Q2 → 0 determined
from these data yields the present best value [Bo75] of the charge radius of
the proton: √

〈r2〉p = 0.862 fm . (6.15)

Determining the neutron electric form factor is rather difficult: targets
with free neutrons are not available and so information about G n

E(Q2) must
be extracted from electron scattering off deuterons. In this case it is necessary
to correct the measured data for the effects of the nuclear force between the
proton and the neutron. However, an alternative, elegant approach has been
developed to determine the charge radius of the free neutron. Low-energy
neutrons from a nuclear reactor are scattered off electrons in an atomic shell
and the so-ejected electrons are then measured. This reaction corresponds to
electron-neutron scattering at small Q2. The result of these measurements is
[Ko95]:

−6�
2 dG n

E(Q2)
dQ2

∣
∣
∣
∣
Q2=0

= −0.113 ± 0.005 fm2 . (6.16)

The neutron, therefore, only appears electrically neutral from the out-
side. Its interior contains electrically charged constituents which also possess
magnetic moments. Since both the charges and their magnetic moments con-
tribute to the electric form factor, we cannot separate their contributions in
a Lorentz invariant fashion. Comparisons with model calculations show that,
locally inside the neutron, the charges of the constituents almost completely
cancel, which also follows naturally from the measured value (6.16).
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6.2 Quasi-elastic Scattering

In Sect. 6.1 we considered the elastic scattering of electrons off free protons
(neutrons) at rest. In this reaction for a given beam energy E and at a
fixed scattering angle θ scattered electrons always have a definite scattering
energy E′ which is given by (5.15):

E′ =
E

1 + E
Mc2 (1 − cos θ)

. (6.17)

Repeating the scattering experiment at the same beam energy and at the
same detector angle, but now off a nucleus containing several nucleons, a more
complicated energy spectrum is observed. Figure 6.3 shows a spectrum of
electrons which were scattered off a thin H2O target, i. e., some were scattered
off free protons, some off oxygen nuclei.

The narrow peak observed at E′ ≈ 160 MeV stems from elastic scattering
off the free protons in hydrogen. Superimposed is a broad distribution with
a maximum shifted a few MeV towards smaller scattering energies. This
part of the spectrum may be identified with the scattering of electrons off
individual nucleons within the 16O nucleus. This process is called quasi-elastic
scattering. The sharp peaks at high energies are caused by scattering off the
16O nucleus as a whole (cf. Fig. 5.9). At the left side of the picture, the tail
of the Δ-resonance can be recognised, this will be discussed in Sect. 7.1.

Both the shift and the broadening of the quasi-elastic spectrum contain
information about the internal structure of atomic nuclei. In the impulse ap-
proximation we assume that the electron interacts with a single nucleon. The

400

300

200

100

0
50         100       150        200       250

E'  [MeV]e

H2 16O(e,e ' )

C
ou

nt
s

Fig. 6.3. Energy spectrum of electrons scattered off a thin H2O target. The data
were taken at the linear accelerator MAMI-A in Mainz at a beam energy of 246 MeV
and at a scattering angle of 148.5◦. (Courtesy of J. Friedrich, Mainz)
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nucleon is knocked out of the nuclear system by the scattering process with-
out any further interactions with the remaining nucleons in the nucleus. The
shift of the maximum in the energy of the scattered electrons towards lower
energies is due to the energy needed to remove the nucleon from the nucleus.
From the broadening of the maximum, compared to elastic scattering off free
protons in the hydrogen atom, we conclude that the nucleus is not a static
object with locally fixed nucleons. The nucleons rather move around “quasi-
freely” within the nucleus. This motion causes a change in the kinematics
compared to scattering off a nucleon at rest.

Let us consider a bound nucleon moving with momentum P in an effective
average nuclear potential of strength S. This nucleon’s binding energy is then
S − P 2/2M . We neglect residual interactions with other nucleons, and the
kinetic energy of the remaining nucleus and consider the scattering of an
electron off this nucleon.

p

–P

P

–P

P '

p'

Proton

Electron

Residual nucleus

In this case, the following kinematic connections apply:

p + P = p′ + P ′ momentum conservation in the e-p system

P ′ = q + P momentum conservation in the γ-p system

E + Ep = E′ + E′
p energy conservation in the e-p system

The energy transfer ν from the electron to the proton for E,E′ � mec
2 and

|P |, |P ′| Mc is given by:

ν = E − E′ = E′
p − Ep =

(
Mc2 +

P ′2

2M

)
−

(
Mc2 +

P 2

2M
− S

)

=
(P + q)2

2M
− P 2

2M
+ S =

q2

2M
+ S +

2|q||P | cosα
2M

, (6.18)

where α is the angle between q and P . We now assume that the motion
of the nucleons within the nucleus is isotropic (i. e. a spherically symmetric
distribution). This leads to a symmetric distribution for ν around an average
value:

ν0 =
q2

2M
+ S (6.19)

with a width of

σν =
√

〈(ν − ν0)2〉 =
|q|
M

√〈
P 2 cos2 α

〉
=

|q|
M

√
1
3
〈
P 2

〉
. (6.20)
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Table 6.1. Fermi momentum PF and effective average potential S for various nuclei.
These values were obtained from an analysis of quasi-elastic electron scattering at
beam energies between 320MeV and 500 MeV and at a fixed scattering angle of
60◦ [Mo71, Wh74]. The errors are approximately 5 MeV/c (PF) and 3 MeV (S).

Nucleus 6Li 12C 24Mg 40Ca 59Ni 89Y 119Sn 181Ta 208Pb

PF [MeV/c] 169 221 235 249 260 254 260 265 265

S [MeV] 17 25 32 33 36 39 42 42 44

Fermi momentum. As we will discuss in Sect. 17.1, the nucleus can be
described as a Fermi gas in which the nucleons move around like quasi-free
particles. The Fermi momentum PF is related to the mean square momentum
by (cf. 17.9):

P 2
F =

5
3
〈P 2〉 . (6.21)

An analysis of quasi-elastic scattering off different nuclei can thus determine
the effective average potential S and the Fermi momentum PF of the nucleons.

Studies of the A-dependence of S and PF were first carried out in the early
seventies. The results of the first systematic analysis are shown in Table 6.1
and can be summarised as follows:

– The effective average nuclear potential S increases continuously with the
mass number A, varying between 17 MeV in Li to 44 MeV in Pb.

– Apart from in the lightest nuclei, the Fermi momentum is nearly indepen-
dent of A and is:

PF ≈ 250 MeV/c . (6.22)

This behaviour is consistent with the Fermi gas model. The density of
nuclear matter is independent of the mass number except for in the lightest
nuclei.

6.3 Charge Radii of Pions and Kaons

The charge radii of various other particles can also be measured by the
same method that was used for the neutron. For example those of the π-
meson [Am84] and the K-meson [Am86], particles which we will introduce
in Sect. 8.2. High-energy mesons are scattered off electrons in the hydrogen
atom. The form factor is then determined by analysing the angular distribu-
tion of the ejected electrons. Since the pion and the kaon are spin-0 particles,
they have an electric but not a magnetic form factor.

The Q2-dependence of these form factors is shown in Fig. 6.4. Both can
be described by a monopole form factor:
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Fig. 6.4. Pion and kaon form factors as functions of Q2 (from [Am84] and [Am86]).
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�
2)−1.

GE(Q2) =
(
1 +Q2/a2

�
2
)−1

with a2 =
6

〈r2〉 . (6.23)

The slopes near the origin yield the mean square charge radii:

〈r2〉π = 0.44 ± 0.02 fm2 ;
√
〈r2〉π = 0.67 ± 0.02 fm

〈r2〉K = 0.34 ± 0.05 fm2 ;
√

〈r2〉K = 0.58 ± 0.04 fm .

We see that the pion and the kaon have a different charge distribution
than the proton, in particular it is less spread out. This may be understood
as a result of the different internal structures of these particles. We will see
in Chap. 8 that the proton is composed of three quarks, while the pion and
kaon are both composed of a quark and an antiquark.

The kaon has a smaller radius than that of the pion. This can be traced
back to the fact that the kaon, in contrast to the pion, contains a heavy quark
(an s-quark). In Sect. 13.5 we will demonstrate in a heavy quark–antiquark
system that the radius of a system of quarks decreases if the mass of its
constituents increases.
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Problems
1. Electron radius

Suppose one wants to obtain an upper bound for the electron’s radius by looking
for a deviation from the Mott cross-section in electron-electron scattering. What
centre of mass energy would be necessary to set an upper limit on the radius of
10−3 fm?

2. Electron-pion scattering
State the differential cross-section, dσ/dΩ, for elastic electron-pion scattering.
Write out explicitly the Q2 dependence of the form factor part of the cross-
section in the limit Q2 → 0 assuming that 〈r2〉π = 0.44 fm2.



7 Deep Inelastic Scattering

Verlockend ist der äußre Schein
der Weise dringet tiefer ein.

Wilhelm Busch
Der Geburtstag

7.1 Excited States of the Nucleons

In Sect. 5.5 we discussed the spectra observed in electron scattering off nu-
clei. In addition to the elastic-scattering peak associated with nuclear excita-
tion additional peaks are observed. Similar spectra are observed for electron-
nucleon scattering.

Figure 7.1 shows a spectrum from electron-proton scattering. It was ob-
tained at an electron energy E = 4.9GeV and at a scattering angle of θ = 10◦

by varying the accepted scattering energy of a magnetic spectrometer in small
steps. Besides the sharp elastic scattering peak (scaled down by a factor of 15
for clarity) peaks at lower scattering energies are observed associated with in-
elastic excitations of the proton. These peaks correspond to excited states of
the nucleon which we call nucleon resonances. The existence of these excited
states of the proton demonstrates that the proton is a composite system. In
Chap. 15 we will explain the structure of these resonances in the framework
of the quark model.
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Fig. 7.1. Spectrum of scattered electrons from electron-proton scattering at an
electron energy of E = 4.9 GeV and a scattering angle of θ = 10◦ (from [Ba68]).
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The invariant mass of these states is denoted by W . It is calculated from
the four-momenta of the exchanged photon (q) and of the incoming proton
(P ) according to

W 2c2 = P ′2 = (P + q)2 = M2c2 + 2Pq + q2 = M2c2 + 2Mν −Q2 . (7.1)

Here the Lorentz-invariant quantity ν is defined by

ν =
Pq

M
. (7.2)

The target proton is at rest in the laboratory system, which corresponds
to P = (Mc,0) and q= ((E−E′)/c, q). Therefore the energy transferred by
the virtual photon from the electron to the proton in the laboratory frame
is:

ν = E − E′ . (7.3)

The Δ(1232) resonance. The nucleon resonance Δ(1232), which appears
in Fig. 7.1 at about E′ = 4.2GeV, has

Proton

P = (M,0)q = (v,q)

p'

p

Electron

P'

Δ-Resonance
a mass W = 1232MeV/c2. As we will
see in Chap. 15, this resonance exists in
four different charge states: Δ++, Δ+,
Δ0, and Δ−. In Fig. 7.1, the Δ+ exci-
tation is observed since charge is not
transferred in the reaction.

The width observed for the elastic
peak is a result of the finite resolution of
the spectrometer, but resonances have a
real width1 of typically Γ ≈ 100MeV.
The uncertainty principle then implies
that such resonances have very short
lifetimes. The Δ(1232) resonance has a width of approximately 120MeV and
thus a lifetime of

τ =
�

Γ
=

6.6 · 10−22 MeVs
120MeV

= 5.5 · 10−24 s .

This is the typical time scale for strong interaction processes. The Δ+ reso-
nance decays by:

Δ+ → p + π0

Δ+ → n + π+ .

A light particle, the π-meson (or pion) is produced in such decays in addition
to the nucleon.

1 The exact meaning of “width” will be discussed in Sect. 9.2.
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7.2 Structure Functions

The search for the nucleon’s constituents required a sufficiently good resolu-
tion in order to resolve them in experiments. The wave length of the probe
particle has to be small compared to the nucleon’s radius, λ R or the four-
momentum transfer Q2 � �

2/R2. To achieve large four-momentum transfer
in the scattering experiments high energies are required. The first generation
was carried out in the late sixties at SLAC using a linear electron accelerator
with a maximum energy of 25GeV. The second generation was performed in
the eighties at CERN using beams of muons of up to 300GeV. Protons of
400GeV produced pions which were kept confined with the help of magnets in
a 200 meters long section. During the time of flight part of the pions decayed
into muons which were collected into a beam with energies up to 300GeV.
The last generation was performed at DESY on the collider HERA, just
terminated in August 2007. In the HERA collider beams of electrons with
30GeV collided with the 900GeV protons.

In the SLAC experiments, which will be discussed and interpreted in the
following, the basic properties of the quark and gluon structure of the hadrons
were established. The second and the third generations of experiments laid
the experimental foundation of the Quantum Chromodynamics, the theory
of the strong interaction.

Individual resonances cannot be distinguished in the excitation spectrum
for invariant masses W >∼ 2.5 GeV/c2. Instead, one observes that many
further strongly interacting particles (hadrons) are produced.

The dynamics of such production pro- Hadrons

P'

Proton

P = (M,0)q = (v,q)

p'

p

Electron

cesses may be, similar to the case of elastic
scattering, described in terms of form fac-
tors. In the inelastic case they are known
as the W1 and W2 structure functions.

In elastic scattering, at a given beam
energy E, only one of the kinematical pa-
rameters may vary freely. For example, if
the scattering angle θ is fixed, kinematics
requires that the squared four-momentum
transfer Q2, the energy transfer ν, the en-
ergy of the scattered electron E′ etc. are
also fixed. Since W = M , (7.1) yields the
relationship:

2Mν −Q2 = 0 . (7.4)

In inelastic scattering, however, the excitation energy of the proton adds a
further degree of freedom. Hence these structure functions and cross-sections
are functions of two independent, free parameters, e. g., (E′, θ) or (Q2, ν).
Since W > M in this case, we obtain

2Mν −Q2 > 0 . (7.5)



86 7 Deep Inelastic Scattering

The Rosenbluth formula (6.10) is now replaced by the cross-section:

d2σ

dΩ dE′ =
(

dσ
dΩ

)*

Mott

[
W2(Q2, ν) + 2W1(Q2, ν) tan2 θ

2

]
. (7.6)

The second term again contains the magnetic interaction.
The results of the deep inelastic experiments are discussed exclusively by

the use of a new Lorentz-invariant quantity, the Bjorken scaling variable.

x :=
Q2

2Pq
=

Q2

2Mν
. (7.7)

This dimensionless quantity is a measure of the inelasticity of the process.
For elastic scattering, in which W = M , (7.4) yields:

2Mν −Q2 = 0 =⇒ x = 1 . (7.8)

However, for inelastic processes, in which W > M , we have:

2Mν −Q2 > 0 =⇒ 0 < x < 1 . (7.9)

In Fig. 7.2 the spectra of electrons scattered off a nucleon are shown in
dependence of the Bjorken scaling variable x for different momenta trans-
fers Q2. To deduce the momentum transfer Q2 and the energy loss ν, the
energy and the scattering angle of the electron have to be determined in the
experiment.

The broad peak observed at x = 1/3 (due to the higher order corrections
in the measurements this peak appears at sligly lower x), is straightforward
to interpret. If we assume that the electrons scatter on the nucleon’s con-
stituents, then the Bjorken scaling variable x is

x =
1
n
· Q

2

2Pq
, (7.10)

where n is the number of constituents. If in addition the electrons scatter
elastically off these constituents, then according to (7.8)

Q2

2Pq
= 1. (7.11)

Thus the broad peak at x = 1/3 means that there are three nucleon con-
stituents. The width of the peak is due to the Fermi motion of the con-
stituents.

As we mentioned the kinematically fully determined scattered electron is
sufficient to analyse the deep inelastic events. Such analysis has been used in
the experiments of the first two generations. Using a 4π detector, the events
of the experiments at DESY could be fully reconstructed. One of the “text
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Fig. 7.2. The transition from elastic over
inelastic to deep inelastic scattering with
increasing Q2 is shown. At small Q2,
where the wave length of the virtual pho-
ton is much larger than the nucleon radius,
only elastic scattering is observed. Once
the wave length becomes comparable to
the nucleon radius the transitions to the
exited states are seen. When the photon
wave length is much smaller than the nu-
cleon radius the electrons scatter on the
charged constituents of the nucleon.

book” deep inelastic scattering events is shown in Fig. 7.3. Because of the so
called confinement neither the scattered quark nor the proton remnant can
be observed directly. They hadronize in colour neutral hadrons as we will
explain later.

Let us redo the above heuristic consideration more formally. The two
structure functions W1(Q2, ν) and W2(Q2, ν) are usually replaced by two
dimensionless structure functions:

F1(x,Q2) = Mc2W1(Q2, ν)
F2(x,Q2) = ν W2(Q2, ν) . (7.12)

At fixed values of x the structure functions F1(x,Q2) and F2(x,Q2) de-
pend only weakly, or not at all, on Q2. This is shown in Fig. 7.4 where
F2(x,Q2) is displayed as a function of x, for data covering a range of Q2 be-
tween 2(GeV/c)2 and 18(GeV/c)2. The peak at x = 1/3 is not as pronounced
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outgoing electron

proton
remnants

struck quark

e p

Fig. 7.3. The 800 GeV proton beam enters from the right, the 30 GeV electron
beam from the left. The direction of all charged particles is determined in the inner
position sensitive detector. The energy of the scattered electrons is measured in the
electromagnetic calorimeter, that of the hadrons in the hadron calorimeter.
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Fig. 7.4. The structure
function F2 of the proton
as a function of x, for Q2

between 2 (GeV/c)2 and
18 (GeV/c)2 [At82].

as it is in Fig. 7.4 because at Q2 > 2 GeV2 higher order effects in the deep
inelastic scattering become important as we will discuss bellow.

The fact that the structure functions are independent of Q2 means, ac-
cording to our previous discussion, that the electrons are scattered off a point
charge (cf. Fig. 5.6). Since nucleons are extended objects, it follows from the
above result that:

nucleons have a sub-structure made up of point-like constituents.

The F1 structure function results from the magnetic interaction. It van-
ishes for scattering off spin zero particles. For spin 1/2 Dirac particles (6.5)
and (7.6) imply the so called Callan-Gross relation [Ca69] (see the exercises)
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2xF1(x) = F2(x) . (7.13)

The ratio 2xF1/F2 is shown in Fig. 7.5 as a function of x. It can be seen
that the ratio is, within experimental error, consistent with unity. Hence we
can further conclude that:

the point-like constituents of the nucleon have spin 1/2.

xx
x

x

x

0,5 1
x =  Q2

2M ν

1,5

1,0

0,5

2xF1
  F2 x

1.5 < Q2/(GeV/c)2 < 4
5 < Q2/(GeV/c)2 < 11

12 < Q2/(GeV/c)2 < 16

Fig. 7.5. Ratio of the structure functions 2xF1(x) and F2(x). The data are from
experiments at SLAC (from [Pe87]). It can be seen that the ratio is approximately
constant (≈ 1).

7.3 The Parton Model

The interpretation of deep inelastic scattering off protons may be considerably
simplified if the reference frame is chosen judiciously. The physics of the
process is, of course, independent of this choice. If one looks at the proton
in a fast moving system, then the transverse momenta and the rest masses
of the proton constituents can be neglected. The structure of the proton
is then given to a first approximation by the longitudinal momenta of its
constituents. This is the basis of the parton model of Feynman and Bjorken.
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Electron

Proton
Parton

Parton

Rest

γ

Electron

Rest

Parton

Proton

γ

– xP

 xP

 (1–x)P

 2xP

a) b)

Fig. 7.6. Schematic representation of deep inelastic electron-proton scattering ac-
cording to the parton model, in the laboratory system (a) and in a fast moving
system (b). This diagram shows the process in two spatial dimensions. The arrows
indicate the directions of the momenta. Diagram (b) depicts the scattering process
in the Breit frame in which the momentum transferred by the virtual photon is zero.
Hence the momentum of the struck parton is turned around but its magnitude is
unchanged.

In this model the constituents of the proton are called partons. Today the
charged partons are identified with the quarks and the electrically neutral
ones with the gluons, the field quanta of the strong interaction.

Decomposing the proton into independently moving partons, the interac-
tion of the electron with the proton can be viewed as the incoherent sum of
its interactions with the individual partons. These interactions in turn can
be regarded as elastic scattering. This approximation is valid as long as the
duration of the photon-parton interaction is so short that the interaction be-
tween the partons themselves can be safely neglected (Fig. 7.6). This is the
impulse approximation which we have already met in quasi-elastic scatter-
ing (p. 78). In deep inelastic scattering this approximation is valid because
the interaction between partons at short distances is weak, as we will see
Sect. 8.3.

If we make this approximation and assume both that the parton masses
can be safely neglected and that Q2 � M2c2, we obtain a direct interpre-
tation of the Bjorken scaling variable x = Q2/2Mν which we defined in
(7.7). It is that fraction of the four-momentum of the proton which is carried
by the struck parton. A photon which, in the laboratory system, has four-
momentum q=(ν/c, q) interacts with a parton carrying the four-momentum
xP . We emphasise that this interpretation of x is only valid in the impulse
approximation, and then only if we neglect transverse momenta and the rest
mass of the parton; i. e. in a very fast moving system.

A popular reference frame satisfying these conditions is the so-called Breit
frame (Fig. 7.6b), where the photon does not transfer any energy (q0 = 0).
In this system x is the three-momentum fraction of the parton.

The spatial resolution of deep inelastic scattering is given by the reduced
wave-length λ– of the virtual photon. This quantity is not Lorentz-invariant
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but depends upon the reference frame. In the laboratory system (q0 = ν/c)
it is:

λ– =
�

|q| =
�c

√
ν2 +Q2c2

≈ �c

ν
=

2Mx�c

Q2
. (7.14)

For example, if x = 0.1 and Q2 = 4 (GeV/c)2 one finds λ– � 10−17 m in the
laboratory system. In the Breit frame, the equation simplifies to

λ– =
�

|q| =
�

√
Q2

. (7.15)

Q2, therefore, has an obvious interpretation in the Breit frame: it fixes the
spatial resolution with which structures can be studied.

7.4 Interpretation of Structure Functions
in the Parton Model

Structure functions describe the internal composition of the nucleon. We now
assume the nucleon to be built from different types of quarks f carrying an
electrical charge zf · e. The cross-section for electromagnetic scattering from
a quark is proportional to the square of its charge, and hence to z2f .

We denote the distribution function of the quark momenta by qf (x), i. e.
qf (x)dx is the expectation value of the number of quarks of type f in the
hadron whose momentum fraction lies within the interval [x, x + dx]. The
quarks responsible for the quantum numbers of the nucleon are called va-
lence quarks. Additionally quark–antiquark pairs are found in the interior
of nucleons. They are produced and annihilated as virtual particles in the
field of the strong interaction. This process is analogous to the production
of virtual electron–positron pairs in the Coulomb field. These quarks and
antiquarks are called sea quarks.

The momentum distribution of the antiquarks is denoted by q̄f (x), and
accordingly that of the gluons by g(x). The structure function F2 is then the
sum of the momentum distributions weighted by x and z2f . Here the sum is
over all types of quarks and antiquarks:

F2(x) = x ·
∑

f

z2f (qf (x) + q̄f (x)) . (7.16)

The structure functions were determined by scattering experiments on
hydrogen, deuterium and heavier nuclei. By convention in scattering-off of
nuclei the structure function is always given per nucleon. Except for small
corrections due to the Fermi motion of the nucleons, the structure function
of the deuteron F d

2 is equal to the average structure function of the nucleons
FN

2 :

F d
2 ≈ F p

2 + F n
2

2
=:FN

2 . (7.17)
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Hence the structure function of the neutron may be determined by subtract-
ing the structure function of the proton from that of the deuteron.

In addition to electrons, muons and neutrinos can also used as beam par-
ticles. Like electrons, muons are point-like, charged particles. There is an
advantage in using them, as they can be produced with higher energies than
electrons. The scattering processes are completely analogous, and the cross-
sections are identical. Neutrino scattering yields complementary information
about the quark distribution. Neutrinos couple to the weak charge of the
quarks via the weak interaction. In neutrino scattering, it is possible to dis-
tinguish between the different types of quarks, and also between quarks and
antiquarks. Details will be given in Sect. 10.8.

x-dependence of the structure functions. Combining the results of neu-
trino and antineutrino scattering yields the momentum distribution of the
sea quarks and of the valence quarks separately. The shape of the curves in
Fig. 7.7 shows that sea quarks contribute to the structure function only at
small values of x. Their momentum distribution drops off rapidly with x and
is negligible above x ≈ 0.35. The distribution of the valence quarks has a
maximum at about x≈ 0.2 and approaches zero for x → 1 and x → 0. The
distribution is smeared out by the Fermi motion of the quarks in the nucleon.

For large x, F2 becomes extremely small. Thus it is very unlikely that one
quark alone carries the major part of the momentum of the nucleon.

0.0       0.2       0.4       0.6       0.8      1.0

x

x.v

x.s

F  N
  2

ν

Fig. 7.7. Sketch of the structure
function F2 of the nucleon as mea-
sured in (anti-)neutrino scattering. Also
shown are the momentum distributions,
weighted by x, of the valence quarks (v)
and sea quarks (s).

Nuclear effects. Typical energies in nuclear physics (e. g., binding energies)
are of the order of several MeV and typical momenta (e. g., Fermi momenta)
are of the order of 250 MeV/c. These are many orders of magnitude less
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than the Q2 values of scattering experiments used to determine the structure
functions. Therefore one would expect the structure functions to be the same
for scattering off free nucleons or scattering off nucleons bound in nuclei,
except, of course, for kinematic effects due to the Fermi motion of the nucleons
in the nucleus. In practise, however, a definite influence of the surrounding
nuclear medium on the momentum distribution of the quarks is observed
[Ar94]. This phenomenon is called EMC Effect after the collaboration that
first detected it in 1983.

For illustration, Fig. 7.8 shows the ratio of the structure functions of
lithium, oxygen, and calcium over deuterium.

F 2
A
/F

2

He/D

C/D

Ca/D0.8

1

10-2 1x10-1

Fig. 7.8. Ratio of the structure functions F2 of lithium, oxygen, and calcium over
deuterium as a function of x [Ar88, Go94b, Am95].

The advantage of comparing isoscalar nuclides, i.e. nuclides with the same
number of protons and neutrons is that we can study the influence of nuclear
binding on the structure function F2, without having to worry about the
differences between F p

2 and F n
2 .

For 0.06 <∼ x <∼ 0.3, the ratio is slightly larger than unity. In the range of
0.3 <∼ x <∼ 0.8 where the valence quarks prevail, the ratio is smaller than unity,
with a minimum at x≈ 0.65. This effect demonstrates that the momentum
distributions of the quarks is shifted toward smaller x when nucleons are
bound in the nucleus [Ar94].

For large values of x, the ratio FA
2 /F

D
2 increases rapidly with x. The

rapid change of the ratio in this region disguises the fact that the absolute
changes in F2 are very small since the structure functions themselves are tiny.
Nevertheless, it is worthwhile to comment on it. In the nucleus the scattering
can happen on a nucleon cluster and the scattered electron may acquire a
larger momentum than on a free nucleon.
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The decline of the nuclear structure functions at x < 0.1 is due to an
effect called nuclear shadowing. This effect arises from the coupling of the
photon to the strongly interacting quarks. We will elaborate shortly on this
effect as it beautifully shows how photons acquire the strong interaction.

By fluctuation of the virtual photon into quark–antiquark pair (Fig. 7.9)
the three momentum of the virtual photon is conserved, but not the energy.
The three momentum of the virtual photon (Q2, ν) ( remember that in (6.3
we introduced Q2 = −q2!) is

(pc)2 = ν2 + (Qc)2 . (7.18)

The energy of the virtual quark–antiquark pair is

ν′ =
√

(pc)2 + (2mqc2)2 =
√
ν2 + (Qc)2 + (2mqc2)2 . (7.19)

For simplicity we treat the quark–antiquark pair as one particle with the
mass 2mq. For small x where nuclear shadowing appears the energy loss ν
has to be large and mqc

2  ν, the following approximation is valid

ν′ =
√
ν2 + (Qc)2 + (2mqc2)2 = ν(1 +

Q2

2ν2
) . (7.20)

The non-conservation of energy during the fluctuation is

Δν = ν′ − ν =
(Qc)2

2ν
=
M(Qc)2

2Mν
= Mc2x . (7.21)

The lifetime of the fluctuation, then, is

Δtc =
�c

Δν
=

�c

Mc2x
. (7.22)

The �/Mc is the Compton length of the nucleon and has a value of ≈ 0.2 fm.

e-

q
_

q

α

α

q

N
uc

le
us Fig. 7.9. Virtual photon couples to the

charged quarks, the coupling constant is
the electromagnetic coupling constant α.
The quarks interact strongly with the nu-
cleons of the nucleus.
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The interpretation of Fig. 7.8 is now straightforward. At x ≈ 0.1 the fluc-
tuation length of the quark–antiquark pair becomes comparable to the dis-
tance between the nucleons in the nucleus and the nuclear shadowing turns
on. The thicker the nucleus is the more pronounced is the effect. A quantita-
tive treatment of the nuclear shadowing effect can be found in [Ko00].

Problems
1. Compton scattering

At the HERA collider ring the spins of the electrons going around the ring align
themselves over time antiparallel to the magnetic guide fields (Sokolov-Ternov
effect [So64]). This spin polarisation may be measured with the help of the spin
dependence of Compton scattering. We solely consider the kinematics below.
a) Circularly polarised photons from an argon laser (514 nm) hit the electrons

(26.67 GeV, straight flight path) head on. What energy does the incoming
photon have in the rest frame of the electron?

b) Consider photon scattering through 90◦ and 180◦ in the electron rest frame.
What energy does the scattered photon possess in each case? How large are
the energies and scattering angles in the lab frame?

c) How good does the spatial resolution of a calorimeter have to be if it is 64 m
away from the interaction vertex and should spatially distinguish between
these photons?

2. Deep inelastic scattering
Derive the Callan-Gross relation (7.13). Which value for the mass of the target
must be used?

3. Deep inelastic scattering
Deep inelastic electron-proton scattering is studied at the HERA collider. Elec-
trons with 30GeV are collided head on with 820 GeV protons.
a) Calculate the centre of mass energy of this reaction. What energy does an

electron beam which hits a stationary proton target have to have to reproduce
this centre of mass energy?

b) The relevant kinematical quantities in deep inelastic scattering are the square
of the four momentum transfer Q2 and the Bjorken scaling variable x. Q2

may, e.g., be found from (6.2). Only the electron’s kinematical variables (the
beam energy Ee, the energy of the scattered electron E′

e and the scattering
angle θ) appear here. In certain kinematical regions it is better to extract
Q2 from other variables since their experimental values give Q2 with smaller
errors. Find a formula for Q2 where the scattering angles of the electron θ
and of the scattered quark γ appear. The latter may be determined experi-
mentally from measurements of the final state hadron energies and momenta.
How?

c) What is the largest possible four momentum transfer Q2 at HERA? What
Q2 values are attainable in experiments with stationary targets and 300GeV
beam energies? What spatial resolution of the proton does this value corre-
spond to?
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d) Find the kinematical region in Q2 and x that can be reached with the ZEUS
calorimeter which covers the angular region 7◦ to 178◦. The scattered electron
needs to have at least 5 Gev energy to be resolved.

e) The electron-quark interaction can occur through neutral currents (γ, Z0) or
through charged ones (W±). Estimate at which value of Q2 the electromag-
netic and weak interaction cross-sections are of the same size.

4. Spin polarisation
Muons are used to carry out deep inelastic scattering experiments at high beam
energies. First a static target is bombarded with a proton beam. This produces
charged pions which decay in flight into muons and neutrinos.
a) What is the energy range of the muons in the laboratory frame if magnetic

fields are used to select a 350 GeV pion beam?
b) Why are the spins of such a monoenergetic muon beam polarised? How does

the polarisation vary as a function of the muon energy?

5. Parton momentum fractions and x
Show that in the parton model of deep inelastic scattering, if we do not neglect
the masses of the nucleon M and of the parton m, the momentum fraction ξ of
the scattered parton in a nucleon with momentum P is given by

ξ = x

[
1 +

m2c2 − M2c2x2

Q2

]
.

In the deep inelastic domain x2M2c2

Q2 � 1 and m2c2

Q2 � 1. (Hint: for small ε, ε′

we can approximate
√

1 + ε(1 + ε′) ≈ 1 + ε
2
(1 + ε′ − ε

4
).)
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Quark [aus dem Slaw.], aus Milch durch
Säuerung oder Labfällung und Abtrennen der
Molke gewonnenes Frischkäseprodukt, das vor
allem aus geronnenem, weiß ausgeflocktem (noch
stark wasserhaltigem) Kasein besteht.

Brockhaus-Encyclopaedia, 19th edition

In the previous chapter we learned how deep inelastic scattering may be used
as a tool to study the structure and composition of the nucleons. Complemen-
tary information about the structure of the nucleons and of other strongly
interacting objects (the hadrons) can be obtained from the spectroscopy of
these particles. This gives us information about the strong interaction and
its field quanta which describe the internal dynamics of the hadrons and the
forces acting between them.

The quark model was conceived in the mid-sixties in order to systematise
the great diversity of hadrons which had been discovered up to then. In
this chapter we will use information from both deep inelastic scattering and
spectroscopy to extract the properties of the quarks.

8.1 The Quark Structure of Nucleons

Quarks. By means of deep inelastic scattering, we found that nucleons con-
sist of electrically charged, point-like particles, the quarks. It should be pos-
sible to reconstruct and to explain the properties of the nucleons (charge,
mass, magnetic moment, isospin, etc.) from the quantum numbers of these
constituents. For this purpose, we need at least two different types of quarks,
which are designated by u (up) and d (down). The quarks have spin 1/2
and, in the naive quark model, their spins must combine to give the total
spin 1/2 of the nucleon. Hence nucleons are built up out of at least 3 quarks.
The proton has two u-quarks and one d-quark, while the neutron has two
d-quarks and one u-quark.

p n
u d

(uud) (udd)

Charge z +2/3 −1/3 1 0

I 1/2 1/2
Isospin

I3 +1/2 −1/2 +1/2 −1/2

Spin s 1/2 1/2 1/2 1/2
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The proton and the neutron form an isospin doublet (I = 1/2). This
is attributed to the fact that u- and d-quarks form an isospin doublet as
well. The fact that the charges of the quarks are multiples of 1/3 is not
unequivocally fixed by the charges of the proton and the neutron. It is rather
related to other clues; such as the fact that the maximum positive charge
found in hadrons is two (e. g., Δ++), and the maximum negative charge is
one (e. g., Δ−). Hence the charges of these hadrons are attributed to 3 u-
quarks (charge: 3 · (2e/3) = 2e) and 3 d-quarks (charge: 3 · (−1e/3) = −1e)
respectively.

Valence quarks and sea quarks. The three quarks that determine the
quantum numbers of the nucleons are called valence quarks. As well as these,
so called sea quarks, virtual quark-antiquark pairs, also exist in the nucleon.
Their effective quantum numbers average out to zero and do not alter those
of the nucleon. Because of their electrical charge, they too are “visible” in
deep inelastic scattering. However, they carry only very small fractions x of
the nucleon’s momentum.

As well as u- and d-quarks, further types of quark–antiquark pairs are
found in the “sea”; they will be discussed in more detail in Chap. 9. The
different types of quarks are called “flavours”. The additional quarks are
called s (strange), c (charm), b (bottom) and t (top). As we will see later, the
six quark types can be arranged in doublets (called families or generations),
according to their increasing mass :

(
u
d

) (
c
s

) (
t
b

)
.

The quarks of the top row have charge number zf = +2/3, those of the
bottom row zf = −1/3. The c, b and t quarks are so heavy that they play
a very minor role in most experiments at currently attainable Q2-values. We
will therefore neglect them in what follows.

Quark charges. The charge numbers zf = +2/3 and −1/3 of the u- and
d-quarks are confirmed by comparing the structure functions of the nucleon
as measured in deep inelastic neutrino scattering or electron or muon scatter-
ing. The structure functions of the proton and the neutron in deep inelastic
electron or muon scattering are given, according to (7.16), by:

F e,p
2 (x)=x ·

[
1
9
(
dpv+ds+d̄s

)
+

4
9

(up
v+us+ūs) +

1
9

(ss+s̄s)
]

F e,n
2 (x)=x ·

[
1
9
(
dnv+ds+d̄s

)
+

4
9

(un
v+us+ūs) +

1
9

(ss+s̄s)
]
. (8.1)

Here, up,n
v (x) is the distribution of the u valence quarks in the proton or neu-

tron, us(x) that of the u sea quarks, etc. We proceed on the assumption that
the sea quark distributions in the proton and neutron are identical and drop
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the upper index. Formally, the neutron and the proton may be transformed
into each other by interchanging the u- and d-quarks (isospin symmetry).
Their quark distributions are therefore related by:

up
v(x) = dnv(x) ,
dpv(x) = un

v(x) ,
up

s (x) = dps (x) = dns (x) = un
s (x) . (8.2)

The structure function of an “average” nucleon is then given by:

F e,N
2 (x) =

F e,p
2 (x) + F e,n

2 (x)
2

=
5
18
x ·

∑

q=d,u

(q(x) + q̄(x)) +
1
9
x ·

[
ss(x) + s̄s(x)

]
. (8.3)

The second term is small, as s-quarks are only present as sea quarks. Thus the
factor 5/18 is approximately the mean square charge of the u- and d-quarks
(in units of e2).

In deep inelastic neutrino scattering, the factors z2f are not present, as
the weak charge is the same for all quarks. Because of charge conservation
and helicity, neutrinos and antineutrinos couple differently to the different
types of quarks and antiquarks. These differences, however, cancel out when
the structure function of an average nucleon (7.17) is considered. One then
obtains:

F ν,N
2 (x) = x ·

∑

f

(qf (x) + q̄f (x)) . (8.4)

Experiments show indeed that except for the factor 5/18, F e,N
2 and F ν,N

2

are identical (Fig. 8.1). Hence one can conclude that the charge numbers
+2/3 and −1/3 have been correctly attributed to the u- and d-quarks.

Quark momentum distributions. Combining the results from the scat-
tering of charged leptons and neutrinos, one obtains information about the
momentum distribution of sea quarks and valence quarks (see Sect. 10.8).
The distribution of the valence quarks has a maximum at x ≈ 0.17 and a
mean value of 〈xv〉 ≈ 0.12. The sea quarks are only relevant at small x; their
mean value lies at 〈xs〉 ≈ 0.04.

Further important information is obtained by considering the integral
over the structure function F ν,N

2 . The integration is carried out over all quark
momenta weighted by their distribution functions; hence, the integral yields
that fraction of the momentum of the nucleon which is carried by the quarks.
Experimentally, one finds

∫ 1

0

F ν,N
2 (x) dx ≈ 18

5

∫ 1

0

F e,N
2 (x) dx ≈ 0.5 . (8.5)
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Fig. 8.1. Comparison of the structure functions observed in deep inelastic scatter-
ing with charged leptons, and with neutrinos [PD94] (see also Sect. 10.8). As well
as the F2 structure function, the distributions of the antiquarks q̄(x) which yield
the sea quark distribution and the distributions of the valence quarks (denoted by
xF3(x)) are given (cf. Fig. 7.7).

Thus roughly half of the momentum is carried by particles interacting neither
electromagnetically nor weakly. They are identified with the gluons.

Figure 8.2 shows the ratio F n
2 /F

p
2 . For x→ 0, the ratio approaches unity.

In this region the sea quarks are absolutely predominant and the small dif-
ference in the distribution of the valence quarks has no significant effect on
the ratio. As x → 1, it is the other way round and the sea quarks no longer
play a part. Hence, one would expect F n

2 /F
p
2 to approach the value 2/3 in

this region. This value would correspond to (2z2d + z2u)/(2z2u + z2d), the ratio
of the mean square charges of the valence quarks of the neutron and proton.
The measured value, however, is 1/4, i. e., z2d/z

2
u. This implies that large mo-

mentum fractions in the proton are carried by u-quarks, and, in the neutron,
by d-quarks.

Constituent quarks. In (8.5) we saw that only about half of the momentum
of a nucleon is carried by valence and sea quarks. In dealing with the spec-
troscopic properties of nucleons, sea quarks and gluons need not be explicitly
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Fig. 8.2. The structure function ratio F n
2 /F p

2 [Am92b]. The data were obtained
from muon scattering with beam energies of 90 and 280 GeV, and averaged over
Q2. The error bars denote statistical errors; the horizontal bands denote systematic
errors.

dealt with. We can combine them with the valence quarks. One then acts
as though there were only three valence quarks, with enlarged masses but
unchanged quantum numbers. We will return to this point in Chaps. 13–15.
These “effective valence quarks” are called constituent quarks.

In interpreting deep inelastic scattering, we neglected the rest masses
of the bare u- and d-quarks. This is justified since they are small [PD98]:
mu=1.5 – 5 MeV/c2, md=3 – 9 MeV/c2. These masses are commonly called
current quark masses. However, these are not the masses obtained from
hadron spectroscopy; e. g., from calculations of magnetic moments and
hadron excitation energies. The constituent quark masses are much larger
(300 MeV/c2). The constituent masses must be mainly due to the cloud of
gluons and sea quarks. Their values for all the quark flavours are compiled
in Table 9.1.

The d-quark is heavier than the u-quark, which can be easily understood
as follows. The proton (uud) and the neutron (ddu) are isospin symmetric
as stated above; i. e., they transform into each other under interchange of
the u- and d-quarks. Since the strong interaction is independent of quark
flavour, the neutron-proton mass difference can only be due to the intrinsic
quark masses and to the electromagnetic interaction between them. If we
assume that the spatial distribution of the u- and d-quarks in the proton
corresponds to the distribution of d- and u-quarks in the neutron, then it is
easily seen that the Coulomb energy must be higher in the proton. Despite
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this, the neutron is heavier than the proton which implies that the mass of
the d-quark is larger.

8.2 Quarks in Hadrons

A multitude of unstable hadrons are known in addition to the nucleons.
Through the study of these hadrons the diverse properties of the strong in-
teraction are revealed. Hadrons can be classified in two groups: the baryons,
fermions with half-integral spin, and the mesons, bosons with integral spin.
The hadronic spectrum was uncovered step by step: initially from analyses
of photographic plates which had been exposed to cosmic radiation and later
in experiments at particle accelerators. Many short-lived particles were thus
detected, including excited states of the nucleon. This led to the conclusion
that nucleons themselves are composed of smaller structures. This conclusion
was then extended to all known hadrons.

Baryons. The lowest mass baryons are the proton and the neutron. They
are the “ground states” of a rich excitation spectrum of well-defined energy
(or mass) states. This will be discussed further in Chap. 15. In this respect,
baryon spectra have many parallels to atomic and molecular spectra. Yet,
there is an important difference. The energy (or mass) gaps between individ-
ual states are of the same order of magnitude as the nucleon mass. These gaps
are then relatively much larger than those of atomic or molecular physics.
Consequently these states are also classified as individual particles with cor-
responding lifetimes.

Like the proton and neutron, other baryons are also composed of three
quarks. Since quarks have spin 1/2, baryons have half-integral spin.

When baryons are produced in particle reactions the same number of an-
tibaryons are simultaneously created. To describe this phenomenon a new
additive quantum number is introduced: baryon number B. We assign B = 1
to baryons and B = −1 to antibaryons. Accordingly, baryon number +1/3 is
attributed to quark, and baryon number −1/3 to antiquarks. All other par-
ticles have baryon number B=0. Experiments indicate that baryon number
is conserved in all particle reactions and decays. Thus, the quark minus anti-
quark number is conserved. This would be violated by, e. g., the hypothetical
decay of the proton:

p → π0 + e+ .

Without baryon number conservation this decay mode would be energetically
favoured. Yet, it has not been observed. The experimental limit of the partial
lifetime is given by τ(p → π0 + e+) > 5.5 · 1032 years [Be90a].

Mesons. The lightest hadrons are the pions. Their mass, about 140 MeV/c2,
is much less than that of the nucleon. They are found in three different charge
states: π−, π0 and π+. Pions have spin 0. It is, therefore, natural to assume
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that they are composed of two quarks, or, more exactly, of a quark and an
antiquark: this is the only way to build the three charge states out of quarks.
The pions are the lightest systems of quarks. Hence, they can only decay
into the even lighter leptons or into photons. Pions have the following quark
structure:

|π+〉 = |ud〉 |π−〉 = |ud〉 |π0〉 =
1√
2

{
|uu〉 − |dd〉

}
.

The |π0〉 is a mixed state of |uu〉 and |dd〉. The above expression includes the
correct symmetry and normalisation. The pion mass is considerably smaller
than the constituent quark mass described above. This is another indication
that the interquark interaction energy has a substantial effect on hadron
masses.

Hadrons composed of quark–antiquark pairs are called mesons. Mesons
have integer spin: their total spin results from a vector sum of the quark and
antiquark spins, including a possible integer orbital angular momentum con-
tribution. Mesons eventually decay into electrons, neutrinos and/or photons;
there is no “meson number conservation”, in contrast to baryon number con-
servation. This is understood in the quark model: mesons are quark–antiquark
combinations |qq 〉 and so the number of quarks minus the number of anti-
quarks is zero. Hence any number of mesons may be produced or annihilated.
It is just a matter of convention which mesons are called particles and which
antiparticles.

8.3 The Quark–Gluon Interaction

Colour. Quarks have another important property called colour which we
have previously neglected. This is needed to ensure that quarks in hadrons
obey the Pauli principle. Consider the Δ++-resonance which consists of three
u-quarks. The Δ++ has spin J = 3/2 and positive parity; it is the lightest
baryon with JP = 3/2+. We therefore can assume that its orbital angular
momentum is � = 0; so it has a symmetric spatial wave function. In order to
yield total angular momentum 3/2, the spins of all three quarks have to be
parallel:

|Δ++〉 = |u↑u↑u↑〉 .
Thus, the spin wave function is also symmetric. The wave function of this
system is furthermore symmetric under the interchange of any two quarks, as
only quarks of the same flavour are present. Therefore the total wave function
appears to be symmetric, in violation of the Pauli principle.

Including the colour property, a kind of quark charge, the Pauli princi-
ple may be salvaged. The quantum number colour can assume three values,
which may be called red, blue and green. Accordingly, antiquarks carry the
anticolours anti-red, anti-blue, and anti-green. Now the three u-quarks may
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be distinguished. Thus, a colour wave function antisymmetric under particle
interchange can be constructed, and we so have antisymmetry for the total
wave function. The quantum number colour was introduced for theoretical
reasons; yet, experimental clues indicate that this hypothesis is correct, as
will be discussed in Sect. 9.3.

Gluons. The interaction binding quarks into hadrons is called the strong
interaction. Such a fundamental interaction is, in our current understanding,
always connected with a particle exchange. For the strong interaction, gluons
are the exchange particles that couple to the colour charge. This is analogous
to the electromagnetic interaction in which photons are exchanged between
electrically charged particles.

The experimental findings of Sect. 8.1 led to the development of a field
theory called quantum chromodynamics (QCD). As its name implies, QCD
is modelled upon quantum electrodynamics (QED). In both, the interaction
is mediated by exchange of a massless field particle with JP = 1− (a vector
boson).

The gluons carry simultaneously colour and anticolour. According to
group theory, the 3 × 3 colour combinations form two multiplets of states: a
singlet and an octet. The octet states form a basis from which all other colour
states may be constructed. They correspond to an octet of gluons. The way
in which these eight states are constructed from colours and anticolours is a
matter of convention. One possible choice is:

rḡ, rb̄, gb̄, gr̄, br̄, bḡ,
√

1/2 (rr̄ − gḡ),
√

1/6 (rr̄ + gḡ − 2bb̄) .

The colour singlet: √
1/3 (rr̄ + gḡ + bb̄),

which is symmetrically constructed from the three colours and the three
anticolours is invariant with respect to a re-definition of the colour names
(rotation in colour space). It, therefore, has no effect in colour space and
cannot be exchanged between colour charges.

By their exchange the eight gluons mediate the interaction between par-
ticles carrying colour charge, i.e., not only the quarks but also the gluons
themselves. This is an important difference to the electromagnetic interac-
tion, where the photon field quanta have no charge, and therefore cannot
couple with each other.

In analogy to the elementary processes of QED (emission and absorption
of photons, pair production and annihilation); emission and absorption of
gluons (Fig. 8.3a) take place in QCD, as do production and annihilation of
quark–antiquark pairs (Fig. 8.3b). In addition, however, three or four gluons
can couple to each other in QCD (Fig. 8.3c,d).

Hadrons as colour-neutral objects. With colour, quarks gain an addi-
tional degree of freedom. One might, therefore, expect each hadron to exist in
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a) b) c) d)

Fig. 8.3. The fundamental interaction diagrams of the strong interaction: emission
of a gluon by a quark (a), splitting of a gluon into a quark–antiquark pair (b) and
“self-coupling” of gluons (c, d).

a multitude of versions which, depending upon the colours of the constituent
quarks involved, would have different total (net) colours but would be equal
in all other respects. In practise only one type of each hadron is observed
(one π−, p, Δ0 etc.). This implies the existence of an additional condition:
only colourless particles, i. e., with no net colour, can exist as free particles.

This condition explains why quarks are not observed as free particles.
A single quark can be detached from a hadron only by producing at least
two free objects carrying colour: the quark, and the remainder of the hadron.
This phenomenon is, therefore, called confinement. Accordingly, the potential
acting on a quark limitlessly increases with increasing separation—in sharp
contrast to the Coulomb potential. This phenomenon is due to the inter-
gluonic interactions.

The combination of a colour with the corresponding anticolour results in a
colourless (“white”) state. Putting the three different colours together results
in a colourless (“white”) state as well. This can be graphically depicted by
three vectors in a plane symbolising the three colours, rotated with respect
to each other by 120◦.

blue

green

redred antired

red

antiblue

green

antired

blue

antigreen

Hence, e.g., the π+ meson has three possible colour combinations:
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|π+〉 =

⎧
⎨

⎩

|urdr〉
|ubdb〉
|ugdg〉 ,

where the index designates the colour or anticolour. The physical pion is a
mixture of these states. By exchange of gluons, which by themselves simulta-
neously transfer colour and anticolour, the colour combination continuously
changes; yet the net-colour “white” is preserved.

In baryons, the colours of the three quarks also combine to yield “white”.
Hence, to obtain a colour neutral baryon, each quark must have a different
colour. The proton is a mixture of such states:

|p〉 =

⎧
⎪⎨

⎪⎩

|uburdg〉
|urugdb〉

...
.

From this argument, it also becomes clear why no hadrons exist which are
|qq〉, or |qqq〉 combinations, or the like. These states would not be colour
neutral, no matter what combination of colours were chosen.
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The strong coupling constant αs. In quantum field theory, the coupling
“constant” describing the interaction between two particles is an effective
constant which in fact dependents on Q2. In the electromagnetic interaction
this dependence is very weak; in the strong interaction, however, it is very
strong. The reason for this is that gluons, the field quanta of the strong in-
teraction, carry colour themselves, and therefore can also couple to other
gluons. In Fig. 8.4 the different Q2 behaviours of the electromagnetic and
the strong coupling constants are presented. The contribution of the fluctu-
ation of the photon into a electron-positron pair as well as of the gluon into
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Fig. 8.4. The Q2 dependence of the strong αs and the electromagnetic αem coupling
constants is shown. The fluctuation of the photon into a electron-positron pair lead
to the screening of the electric charge. The analogon, the fluctuation of the gluon
into a quark-antiquark pair leads to the screening of the strong charge. The self
coupling of the gluons result in the antiscreening.

the quark-antiquark pair results in the screening of the electric and strong
charge. The higher Q2 is, the smaller are the distances between the inter-
acting particles; effective charge of the interacting particles increases: the
coupling constant increases. Gluons couple to themselves and can fluctuate
into gluons. This fluctuation causes antiscreening. The closer the interact-
ing particles are, the smaller is the charge they see. The coupling constant
decreases with increasing Q2. In the case of gluons the antiscreening is far
stronger than the screening.

A first-order perturbation calculation in QCD yields:

αs(Q2) =
12π

(33 − 2nf ) · ln(Q2/Λ2)
. (8.6)

Here, nf denotes the number of quark types involved. Since a heavy virtual
quark–antiquark pair has a very short lifetime and range, it can be resolved
only at very high Q2. Hence, nf depends on Q2, with nf ≈ 3–6. The param-
eter Λ is the only free parameter of QCD. It was found to be Λ ≈ 250 MeV/c
by comparing the prediction with the experimental data. The application of
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Fig. 8.5. Structure function F2 of the deuteron as a function of Q2 at different
values of x on a logarithmic scale. The results shown are from muon scattering
at CERN (NMC and BCDMS collaboration) [Am92a, Be90b] and from electron
scattering at SLAC [Wh92]. For clarity, the data at the various values of x are
multiplied by constant factors. The solid line is a QCG fit, taking into account
the theoretically predicted scaling violation. The gluon distribution and the strong
coupling constant are free parameters here.

perturbative expansion procedures in QCD is valid only if αs  1. This is
satisfied for Q2�Λ2≈0.06 (GeV/c)2.

From (7.15) we can see that the Q2-dependence of the coupling strength
corresponds to a dependence on separation. For very small distances and cor-
respondingly high values of Q2, the interquark coupling decreases, vanishing
asymptotically. In the limit Q2 → ∞, quarks can be considered “free”, this
is called asymptotic freedom. By contrast, at large distances, the interquark
coupling increases so strongly that it is impossible to detach individual quarks
from hadrons (confinement).

8.4 Scaling Violations of the Structure Functions

In Sect. 7.2 we showed that the structure function F2 depends solely on the
scaling variable x. We thereby concluded that the nucleon is composed of
point-like, charged constituents. Yet, high precision measurements show that
to a small degree, F2 does depend on Q2. Figure 8.5 shows the experimental
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Fig. 8.6. The proton structure function F2 as a function of x at three values
of Q2. To cover the large range of Q2 the data of all the experiments of the three
generations were included. The lines are a QCD fit to the experimental points taking
into account the theoretically predicted scaling violation. The gluon distribution
and the strong coupling constant are free parameters here. The plots beautifully
demonstrate how the number of the sea quarks increases with increasing resolution
and the number of the quarks for large x decreases. The experimental points were
omitted as to clearly show the depletion of the quarks at large x.

measurements of F2 as a function of Q2 at several fixed values of x. The data
cover a large kinematic range of x and Q2. We see that the structure function
increases with Q2 at small values of x and decreases with increasing Q2 at
large values of x. This behaviour, called scaling violation, is sketched once
more in Fig. 8.6. In this Fig. we omitted the experimental points in order to
be able to clearly see the behaviour of the F2 for large momentum fractions.
With increasing values of Q2 there are fewer quarks with large momentum
fractions in the nucleon; quarks with small momentum fractions predominate.

This violation of scaling is not caused by a finite size of the quarks. In the
framework of QCD, the above violation can be traced back to fundamental
processes in which the constituents of the nucleon continuously interact with
each other (Fig. 8.3). Quarks can emit or absorb gluons, gluons may split
into qq pairs, or emit gluons themselves. Thus, the momentum distribution
between the constituents of the nucleon is continually changing.
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Figure 8.7 is an attempt to illustrate how this alters the measurements
of structure functions at different values of Q2. A virtual photon can resolve
dimensions of the order of �/

√
Q2. At smallQ2 = Q2

0, quarks and any emitted
gluons cannot be distinguished and a quark distribution q(x,Q2

0) is measured.
At larger Q2 and higher resolution, emission and splitting processes must be
considered. Thus, the number of partons seen to share the momentum of
the nucleon increases. The quark distribution q(x,Q2) at small momentum
fractions x, therefore, is larger than q(x,Q2

0); whereas the effect is reversed
for large x. This is the origin of the increase of the structure function with
Q2 at small values of x and its decrease at large x. The gluon distribution
g(x,Q2) shows a Q2-dependence as well which originates from processes of
gluon emission by a quark or by another gluon.
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Fig. 8.7. A quark emits a gluon which produces a quark-antiquark pair (left). The
gluon or the quark may emit a further gluon producing the next generation of sea
quarks (right). The diagram shows the interaction of a photon with a quark before
(left) and after (right) it has emitted a gluon. At small Q2 = Q2

0, the quark and
the gluon are seen as a unit. At larger Q2 > Q2

0, the resolution increases and the
momentum fraction of the second quark alone is measured, i.e., without that of the
gluon; hence, a smaller value of the Bjorken scaling variable x is obtained.

The change in the quark distribution and in the gluon distribution with
Q2 at fixed values of x is proportional to the strong coupling constant αs(Q2)
and depends upon the size of the quark and gluon distributions at all larger
values of x. The mutual dependence of the quark and gluon distributions
can be described by a system of coupled integral-differential equations [Gr72,
Li75, Al77]. If αs(Q2) and the shape of q(x,Q2

0) and g(x,Q2
0) are known at

a given value Q2
0, then q(x,Q2) and g(x,Q2) can be predicted from QCD

for all other values of Q2. Alternatively, the coupling αs(Q2) and the gluon
distribution g(x,Q2), which cannot be directly measured, can be determined
from the observed scaling violation of the structure function F2(x,Q2).

The solid lines in Fig. 8.5 and 8.5 show a fit to the scaling violation of the
measured structure functions from a QCD calculation [Ar93]. The fit value
of Λ ≈ 250 MeV/c corresponding to a coupling constant:
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αs(Q2 =100 (GeV/c)2) ≈ 0.16 . (8.7)

It has to be pointed out, however, that theoretically only the change in the
structure function with Q2 can be calculated. Thus at least at one Q2 = Q2

0

the x-dependence of the F2(x,Q2) has to be taken over from the experiment.

Summary. Scaling violation in the structure functions is a highly interesting
phenomenon. It is not unusual that particles which appear point-like turn out
to be composite when studied more closely (e.g., atomic nuclei in Rutherford
scattering with low-energy α particles or high-energy electrons). In deep in-
elastic scattering, however, a new phenomenon is observed. With increasing
resolution, quarks and gluons turn out to be composed of quarks and gluons;
which themselves, at even higher resolutions, turn out to be composite as
well (Fig. 8.7). The quantum numbers (spin, flavour, colour, . . . ) of these
particles remain the same; only the mass, size, and the effective coupling
αs change. Hence, there appears to be in some sense a self similarity in the
internal structure of strongly interacting particles.

Problem
1. Partons

Consider deep inelastic scattering of muons with energy 600GeV off protons at
rest. The data analysis is to be carried out at Q2 = 4 GeV2/c2.
a) What is the smallest value of x which can be attained under these circum-

stances? You may assume that the minimal scattering energy is E′ = 0.
b) How many partons may be resolved with x > 0.3, x > 0.03 and in the full

measurable range of x if we parameterise the parton distribution as follows:
qv(x) = A(1 − x)3/

√
x for the valence quarks,

qs(x) = 0.4(1 − x)8/x for the sea quarks and
g(x) = 4(1 − x)6/x for the gluons.

The role of the normalisation constant, A, is to take into account that there
are 3 valence quarks.



9 Particle Production in e+e− Collisions

So far, we have only discussed the light quarks, u and d, and those hadrons
composed of these two quarks. The easiest way to produce hadrons with
heavier quarks is in e+e− collisions. Free electrons and positrons may be
produced rather easily. They can be accelerated, stored and made to collide in
accelerators. In an electron–

Z0γ

f

e− e+

f

e− e+

f fpositron collision process, all
particles which interact electro-
magnetically and weakly can be
produced, as long as the en-
ergy of the beam particles is
sufficiently high. In an electron-
positron electromagnetic annihi-
lation, a virtual photon is pro-
duced, which immediately de-
cays into a pair of charged ele-
mentary particles. In a weak in-
teraction, the exchanged particle is the heavy vector boson Z0 (cf. the diagram
and see Chap. 11). The symbol f denotes an elementary fermion (quark or
lepton) and f its antiparticle. The ff system must have the quantum num-
bers of the photon or the Z0, respectively. In these reactions all fundamental,
charged particle–antiparticle pairs can be produced; lepton–antilepton and
quark–antiquark pairs. Neutrinos are electrically neutral; hence, neutrino–
antineutrino pairs can only be produced by Z0 exchange.

Colliding beams. Which particle–antiparticle pairs can be produced only
depends upon the energy of the electrons and

f

e+e-

p
2

p'
2

p'
1

-f

p
1

positrons. In a storage ring, electrons and
positrons orbit with the same energy E, but
in opposite directions, and collide head-on. It
is conventional to use the Lorentz-invariant en-
ergy variable s, the square of the centre of mass
energy:

s = (p1c+ p2c)2

= m2
1c

4 +m2
2c

4 + 2E1E2 − 2p1p2c
2 .

(9.1)
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In a storage ring with colliding particles of energy E,

s = 4E2 . (9.2)

Hence, particle–antiparticle pairs with masses of up to 2m =
√
s/c2 can be

produced. To discover new particles, the storage ring energy must be raised.
One then looks for an increase in the reaction rate, or for resonances in the
cross-section.

The great advantage of colliding beam experiments is that the total beam
energy is available in the centre of mass system. In a fixed target experiment,
with m satisfying mc2  E, s is related to E by:

s ≈ 2mc2 · E . (9.3)

Here, the centre of mass energy only increases proportionally to the square
root of the beam energy.

Particle detection. To detect the particles produced in e+e− annihilation
one requires a detector set up around the collision point which covers as much
as possible of the the total 4π solid angle. The detector should permit us to
trace the tracks back to the interaction point and to identify the particles
themselves. The basic form of such a detector is sketched in Fig. 9.1.

9.1 Lepton Pair Production

Before we turn to the creation of heavy quarks, we want to initially consider
the leptons. Leptons are elementary spin 1/2 particles which feel the weak
and, if they are charged, the electromagnetic interaction — but not, however,
the strong interaction.

Muons. The lightest particles which can be produced in electron-positron
collisions are muon pairs:

e+ + e− → μ+ + μ−.

The muon μ− and its antiparticle1 the μ+ both have a mass of only 105.7
MeV/c2 and they are produced in all usual e+e− storage ring experiments.
They penetrate matter very easily2, whereas electrons because of their small
mass and hadrons because of the strong interaction have much smaller ranges.
After that of the neutron, theirs is the longest lifetime (2 μs) of any unsta-
ble particle. This means that experimentally they may easily be identified.
Therefore the process of muon pair production is often used as a reference
point for other e+e− reactions.

1 Antiparticles are generally symbolised by a bar (e.g., νe). This symbol is generally
skipped over for charged leptons since knowledge of the charge alone tells us
whether we have a particle or an antiparticle. We thus write e+, μ+, τ+.

2 Muons from cosmic radiation can still be detected in underground mines!
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Fig. 9.1. Sketch of a 4π-detector, as used in e+e− collision experiments. The
detector is inside the coil of a solenoid, which typically produces a magnetic field
of around 1T along the beam direction. Charged particles are detected in a vertex
detector, mostly composed of silicon microstrip counters, and in wire chambers. The
vertex detector is used to locate the interaction point. The curvature of the tracks
in the magnetic field tell us the momenta. Photons and electrons are detected as
shower formations in electromagnetic calorimeters (of, e.g., lead glass). Muons pass
through the iron yoke with little energy loss. They are then seen in the exterior
scintillation counters.

Tau leptons. If the centre of mass energy in an e+e− reaction suffices, a
further lepton pair, the τ− and τ+, may be produced. Their lifetime, 3 ·
10−13 s, is much shorter. They may weakly decay into muons or electrons as
will be discussed in Sect 10.1f.

The tau was discovered at the SPEAR e+e− storage ring at SLAC when
oppositely charged electron-muon pairs were observed whose energy was
much smaller than the available centre of mass energy [Pe75].

These events were interpreted as the creation and subsequent decay of a
heavy lepton–antilepton pair:

e+ + e− −→ τ+ + τ−

| |→ μ− + νμ + ντ or e− + νe + ντ||−−−→ e+ + νe + ντ or μ+ + νμ + ντ .

The neutrinos which are created are not detected.
The threshold for τ+τ−-pair production, and hence the mass of the τ -

lepton, may be read off from the increase of the cross-section of the e+e−
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Fig. 9.2. Ratio of the cross-sections for the production of two particles with op-
posite charges in the reaction e+ + e− → e± + X∓ + Y, to the cross-sections for
the production of μ+μ− pairs [Ba78, Ba88]. Here X∓ denotes a charged lepton or
meson and Y symbolises the unobserved, neutral particles. The sharp increase at√

s ≈ 3.55 GeV is a result of τ -pair production, which here becomes energetically
possible. The threshold for the creation of mesons containing a charmed quark (ar-
row) is only a little above that for τ -lepton production. Both particles have similar
decay modes which makes it more difficult to detect τ -leptons.

reaction with the centre of mass energy. One should use as many leptonic
and hadronic decay channels as possible to provide a good signature for τ -
production (Fig. 9.2). The experimental threshold at

√
s = 2mτ c

2 implies
that the tau mass is 1.777 GeV/c2.

Cross-section. The creation of charged lepton pairs may, to a good approx-
imation, be viewed as a purely electromagnetic process (γ exchange). The
exchange of Z0 bosons, and interference between photon and Z0 exchange,
may be neglected if the energy is small compared to the mass of the Z0. The
cross-section may then be found relatively easily. The most complicated case
is the elastic process e+e− → e+e−, Bhabha scattering. Here two processes
must be taken into account: the annihilation of the electron and positron
into a virtual photon (with subsequent e+e−-pair creation) and secondly the
scattering of the electron and positron off each other.

e+

γ
e−

e+e−

e+

γ

e−

e+e−

+
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These processes lead to the same final state and so their amplitudes must be
added in order to obtain the cross-section.

Muon pair creation is more easily calculated. Other e+e− reactions are
therefore usually normalised with respect to it. The differential cross-section
for this reaction is:

dσ
dΩ

=
α2

4s
(�c)2 ·

(
1 + cos2 θ

)
. (9.4)

Integrating over the solid angle Ω yields the total cross-section:

σ =
4πα2

3s
(�c)2 , (9.5)

and one finds

σ(e+e− → μ+μ−) = 21.7
nbarn

(E2/GeV2)
. (9.6)

The formal derivation of (9.4) may be found in many standard texts
[Go86, Na90, Pe87], we will merely try to make it plausible: The photon
couples to two elementary charges. Hence the matrix element contains two
powers of e and the cross-section, which is proportional to the square of the
matrix element, is proportional to e4 or α2. The length scale is proportional
to �c, which enters twice over since cross-sections have the dimension of area.
We must further divide by a quantity with dimensions of [energy2]. Since the
masses of the electron and the muon are very small compared to s, this last
is the only reasonable choice. The cross-section then falls off with the square
of the storage ring’s energy. The (1 + cos2 θ) angular dependence is typical
for the production of two spin 1/2 particles such as muons. Note that (9.4)
is, up to this angular dependence, completely analogous to the equation for
Mott scattering (5.39) once we recognise that Q2c2 = s = 4E2 = 4E′2 holds
here.

Figure 9.3 shows the cross-section for e+e−→ μ+μ− and the prediction of
quantum electrodynamics. One sees an excellent agreement between theory
and experiment. The cross-section for e+e− → τ+τ− is also shown in the
figure. If the centre of mass energy

√
s is large enough that the difference in

the μ and τ rest masses can be neglected, then the cross-sections for μ+μ−

and τ+τ− production are identical. One speaks of lepton universality, which
means that the electron, the muon and the tau behave, apart from their
masses and associated effects, identically in all reactions. The muon and the
tau may to a certain extent be viewed as being heavier copies of the electron.

Since (9.6) describes the experimental cross-section so well, the form fac-
tors of the μ and τ are unity — which according to Table 5.1 means they are
point-like particles. No spatial extension of the leptons has yet been seen. The
upper limit for the electron is 10−18 m. Since the hunt for excited leptons so
far has also been unsuccessful, it is currently believed that leptons are indeed
elementary, point-like particles.
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Fig. 9.3. Cross-sections of the reactions e+e− → μ+μ− and e+e− → τ+τ− as
functions of the centre of mass energy

√
s (from [Ba85] and [Be87]). The solid line

shows the cross-section (9.6) predicted by quantum electrodynamics.

9.2 Resonances

If the cross-sections for the production of muon pairs and hadrons in e+e−

scattering are plotted as a function of the centre of mass energy
√
s, one

finds in both cases the 1/s-dependence of (9.5). In the hadronic final state
channels this trend is broken by various strong peaks which are sketched in
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[Gr91]. The cross-section for
direct muon pair production
(9.5) is denoted by a dashed
curve.
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Fig. 9.4. These so-called resonances are short lived states which have a fixed
mass and well-defined quantum numbers such as angular momentum. It is
therefore reasonable to call them particles.

Breit-Wigner formula. The energy dependence of the cross-section of a
reaction between two particles a and b close to a resonance energy E0 is
generally described by the Breit-Wigner formula (see, e. g., [Pe87]). In the
case of elastic scattering, it is approximately given by:

σ(E) =
πλ–2 (2J + 1)

(2sa + 1)(2sb + 1)
· Γ 2

(E − E0)2 + Γ 2/4
. (9.7)

Here λ– is the reduced wave-length in the centre of mass system, sa and
sb are the spins of the reacting particles and Γ is the width (half width) of
the resonance. The lifetime of such a resonance is τ = �/Γ . This formula is
similar to that for the resonance of a forced oscillator with large damping. E
corresponds to the excitation frequency ω, E0 to the resonance frequency ω0

and the width Γ to the damping.
For an inelastic reaction like the case at hand, the cross-section depends

upon the partial widths Γi and Γf in the initial and final channels and on the
total width Γtot. The latter is the sum of the partial widths of all possible
final channels. The result for an individual decay channel f is

σf (E) =
3πλ–2

4
· ΓiΓf

(E − E0)2 + Γ 2
tot/4

, (9.8)

where we have replaced sa and sb by the spins of the electrons (1/2) and J
by the spin of the photon (1).

The resonances �, ω, and φ. First, we discuss resonances at low energies.
The width Γ of these states varies between 4 and 150 MeV, corresponding to
lifetimes from about 10−22 s to 10−24 s. These values are typical of the strong
interaction. These resonances are therefore interpreted

e+

γ

e−

π− π+

ρ0

as quark–antiquark bound states whose masses are just
equal to the total centre of mass energy of the reaction.
The quark–antiquark states must have the same quan-
tum numbers as the virtual photon; in particular, they
must have total angular momentum J = 1 and nega-
tive parity. Such quark–antiquark states are called vector
mesons; they decay into lighter mesons. The sketch de-
picts schematically the production and the decay of a
resonance.

The analysis of the peak at 770–780 MeV reveals that
it is caused by the interference of two resonances, the

0-meson (m�0 = 770 MeV/c2) and the ω-meson (mω =
782MeV/c2). These resonances are produced via the creation of uu and dd
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pairs. Since u-quarks and d-quarks have nearly identical masses, the uu- and
dd-states are approximately degenerate. The 
0 and ω are mixed states of uu
and dd.

These two mesons undergo different decays and may be experimentally
identified by them (cf. Sect. 14.3):


0 → π+π− ,

ω → π+π0π− .

At an energy of 1019 MeV, the φ-resonance is produced. It has a width
of only Γ = 4.4 MeV, and hence a relatively long lifetime compared to other
hadrons. The main decay modes (≈ 85%) of the φ are into two kaons, which
have masses of 494 MeV/c2 (K±) and 498 MeV/c2 (K0):

φ → K+ + K− ,

φ → K0 + K0 .

Kaons are examples of the so-called strange particles. This name reflects
the unusual fact that they are produced by the strong interaction, but only
decay by the weak interaction; this despite the fact that their decay products
include hadrons, i. e., strongly interacting particles.

This behaviour is explained by the fact that kaons are quark–antiquark
combinations containing an s or “strange” quark:

|K+〉 = |us〉 |K0〉 = |ds〉
|K−〉 = |us〉 |K0〉 = |ds〉 .

The constituent mass attributed to the s-quark is 450 MeV/c2. In a kaon
decay, the s-quark must turn into a light quark which can only happen in weak
interaction processes. Kaons and other “strange particles” can be produced in
the strong interaction, as long as equal numbers of s-quarks and s-antiquarks
are produced. At least two “strange particles” must therefore be produced
simultaneously. We introduce the quantum number S (the strangeness), to
indicate the number of s-antiquarks minus the number of s-quarks. This
quantum number is conserved in the strong and electromagnetic interactions,
but it can be changed in weak interactions.

The φ meson decays mainly into two kaons because it is an ss system
When it decays a uu pair or a dd pair are produced in the colour field of the
strong interaction. The kaons are produced by combining these with the ss
quarks, as shown in the sketch.
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Because of the small mass difference mφ−2mK, the phase space available
to this decay is very small. This accounts for the narrow width of the φ
resonance.

One could ask: why doesn’t the φ decay mainly into light mesons? The
decay into pions is very rare (2.5 %), although the phase space available is
much larger. Such a decay is only possible if the s and s first annihilate, pro-
ducing two or three quark–antiquark pairs. According to QCD, this proceeds
through a virtual intermediate state with at least three gluons. Hence, this
process is suppressed with respect to the decay into two kaons which can
proceed through the exchange of one gluon. The enhancement of processes
with continuous quark lines is called the Zweig rule.

}}
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The resonances J/ψ and Υ . Although the s-quarks were known from
hadron spectroscopy, it was a surprise when in 1974 an extremely narrow
resonance whose width was only 87 keV was discovered at a centre of mass
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Table 9.1. Charges and masses of the quarks: b, g, r denote the colours blue, green
and red. Listed are the masses of “bare” quarks (current quarks) which would be
measured in the limit Q2 → ∞ [PD98] as well as the masses of constituent quarks,
i. e., the effective masses of quarks bound in hadrons. The masses of the quarks,
in particular those of the current quarks, are strongly model dependent. For heavy
quarks, the relative difference between the two masses is small.

Electr. Mass [MeV/c2]
Quark Colour

Charge Bare Quark Const. Quark

down b, g, r −1/3 3 – 9 ≈ 300
up b, g, r +2/3 1.5 – 5 ≈ 300
strange b, g, r −1/3 60 – 170 ≈ 450
charm b, g, r +2/3 1 100 – 1 400
bottom b, g, r −1/3 4 100 – 4 400
top b, g, r +2/3 168 · 103 – 179 · 103

energy of 3097 MeV. It was named J/ψ.3 The resonance was attributed to the
production of a new heavy quark. There were already theoretical suggestions
that such a c quark (“charmed” quark) exists. The long lifetime of the J/ψ
is explained by its cc structure. The decay into two mesons each containing a
c- (or c)-quark plus a light quark (in analogy to the decay φ→ K+K) would
be favoured by the Zweig rule, but is impossible for reasons of energy. This is
because the mass of any pair of D mesons (cu, cd etc.), which were observed
in later experiments, is larger than the mass of the J/ψ. More resonances were
found at centre of mass energies some 100 MeV higher. They were called ψ′,
ψ′′ etc., and were interpreted as excited states of the cc system. The J/ψ is
the lowest cc state with the quantum numbers of the photon JP = 1−. A cc
state, the ηc, exists at a somewhat lower energy, it has quantum numbers 0−

(cf. Sect. 13.2 ff) and cannot be produced directly in e+e− annihilation.
A similar behaviour in the cross-section was found at about 10 GeV. Here

the series of Upsilon (Υ) resonances was discovered [He77, In77]. These bb
states are due to the even heavier b-quark (“bottom” quark). The lowest-
lying state at 9.46 GeV also has an extremely narrow width (only 52 keV)
and hence a long lifetime.

The t-quark (“top” quark) was found in 1995 in two pp collision exper-
iments at the Tevatron (FNAL) [Ab95a, Ab95b]. These and further experi-
ments imply a t-quark mass of 173.8±5.2GeV/c2. Present day e+e− acceler-
ators can only attain centre of mass energies of up to around 172 GeV, which
is not enough for tt pair production.

3 This particle was discovered nearly simultaneously in two differently conceived
experiments (pp collision and e+e− annihilation). One collaboration called it J
[Au74a], the other ψ [Au74b].
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The Z0 resonance. At
√
s = 91.2 GeV, an additional resonance is observed

with a width of 2490 MeV. It decays into lepton and quark pairs. The prop-
erties of this resonance are such that it is thought to be a real Z0, the vector
boson of the weak interaction. In Sect. 11.2, we will describe what we can
learn from this resonance.

9.3 Non-resonant Hadron Production

Up to now we have solely considered resonances in the cross-sections of
electron-positron annihilation. Quark–antiquark pairs can, naturally, also be
produced among the resonances. Further quark–antiquark pairs are then
produced and form hadrons, around the primarily produced quark (or an-
tiquark). This process is called hadronisation. Of course only those quarks
can be produced whose masses are less than half the centre of mass energy
available.

In hadron production, a quark–antiquark pair is initially produced. Hence
the cross-section is given by the sum of the individual cross-sections of quark–
antiquark pair production. The production of the primary quark–antiquark
pair by an electromagnetic interaction can be calculated analogously to muon
pair production. Unlike muons, quarks do not carry a full elementary charge
of 1 · e; but rather a charge zf · e which is −1/3e or +2/3e, depending on the
quark flavour f . Hence the transition matrix element is proportional to zfe2,
and the cross-section is proportional to z2fα

2. Since quarks (antiquarks) carry
colour (anticolour), a quark–antiquark pair can be produced in three different
colour states. Therefore there is an additional factor of 3 in the cross-section
formula. The cross-section is given by:

σ(e+e− → qfqf ) = 3 · z2f · σ(e+e− → μ+μ−) , (9.9)

and the ratio of the cross-sections by

R :=
σ(e+e− → hadrons)
σ(e+e− → μ+μ−)

=

∑
f σ(e+e− → qfqf )
σ(e+e− → μ+μ−)

= 3 ·
∑

f

z2f . (9.10)

Here only those quark types f which can be produced at the centre of mass
energy of the reaction contribute to the sum over the quarks.

Figure 9.5 shows schematically the ratio R as a function of the centre of
mass energy

√
s. Many experiments had to be carried out at different particle

accelerators, each covering a specific region of energy, to obtain such a picture.
In the non-resonant regions R increases step by step with increasing energy√
s. This becomes plausible if we consider the contributions of the individual

quark flavours. Below the threshold for J/ψ production, only uu, dd, and ss
pairs can be produced. Above it, cc pairs can also be produced; and at even
higher energies, bb pairs are produced. The sum in (9.10) thus contains at
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Fig. 9.5. Cross-section
of the reaction e+e− →
hadrons, normalised to
e+e− → μ+μ−, as a
function of the centre of
mass energy

√
s (sketch).

The horizontal lines cor-
respond to R = 6/3, R =
10/3 and R = 11/3, the
values we expect from
(9.10), depending upon
the number of quarks in-
volved. The value R =
15/3 which is expected if
the t-quark participates
lies outside the plotted
energy range. (Courtesy
of G. Myatt, Oxford )

higher energies ever more terms. As a corollary, the increase in R tells us
about the charges of the quarks involved. Depending on the energy region,
i.e., depending upon the number of quark flavours involved, one expects:

R = 3·
∑

f

z2f = 3 ·
{

( 2
3 )2

u
+ (− 1

3 )2

d
+ (− 1

3 )2

s
︸ ︷︷ ︸

3 · 6/9

+ (2
3 )2

c

︸ ︷︷ ︸
3 · 10/9

+ (− 1
3 )2

}

b

︸ ︷︷ ︸
3 · 11/9

. (9.11)

These predictions are in good agreement with the experimental results.
The measurement of R represents an additional way to determine the quark
charges and is simultaneously an impressive confirmation of the existence of
exactly three colours.
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9.4 Gluon Emission

Using e+e− scattering it has proven possible to experimentally establish the
existence of gluons and to measure the value of αs, the strong coupling con-
stant.

The first indications for the existence of gluons were provided by deep in-
elastic scattering of leptons off protons. The integral of the structure function
F2 was only half the expected value. The missing half of the proton momen-
tum was apparently carried by electrically neutral particles which were also
not involved in weak interactions. They were identified with the gluons. The
coupling constant αs was determined from the scaling violation of the struc-
ture function F2 (Sect. 8.4).

A direct measurement of these quantities is possible by analysing “jets”.
At high energies, hadrons are typically produced in two jets, emitted in op-

Hadrons

Hadrons Hadrons

Hadrons

Hadrons

q

q
q

q
g

Fig. 9.6. Typical 2-jet and 3-jet events, measured with the JADE detector at the
PETRA e+e− storage ring. The figures show a projection perpendicular to the
beam axis, which is at the centre of the cylindrical detector. The tracks of charged
particles (solid lines) and of neutral particles (dotted lines) are shown. They were
reconstructed from the signals in the central wire chamber and in the lead glass
calorimeter surrounding the wire chamber. In this projection, the concentration of
the produced hadrons in two or three particle jets is clearly visible. (Courtesy of
DESY )
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posite directions. These jets are produced in the hadronisation of the primary
quarks and antiquarks (left side of Fig. 9.6).

In addition to simple qq production, higher-order processes can occur.
For example, a high-energy (“hard”) gluon can be emitted, which can then
manifest itself as a third jet of hadrons. This corresponds to the emission
of a photon in electromagnetic bremsstrahlung. Emission of a hard photon,
however, is a relatively rare process, as the electromagnetic coupling constant
α is rather small. By contrast, the probability of gluon bremsstrahlung is
given by the coupling constant αs. Such 3-jet events are indeed detected.
Figure 9.6 (right) shows a particularly nice example. The coupling constant
αs may be deduced directly from a comparison of the 3- and 2-jet event rates.
Measurements at different centre of mass energies also demonstrate that αs

decreases with increasing Q2 = s/c2 as (8.6) predicts.

Problems
1. Electron-positron collisions

a) Electrons and positrons each with a beam energy E of 4 GeV collide head on
in a storage ring. What production rate of μ+μ−-pairs would you expect at a
luminosity of 1032 cm−2 s−1? What production rate for events with hadronic
final states would you expect?

b) It is planned to construct two linear accelerators aimed at each other (a linear
collider) from whose ends electrons and positrons will collide head on with
a centre of mass energy of 500 GeV. How big must the luminosity be if one
wants to measure the hadronic cross-section within two hours with a 10 %
statistical error?

2. Υ resonance
Detailed measurements of the Υ (1S) resonance, whose mass is roughly 9460MeV,
are performed at the CESR electron-positron storage ring.
a) Calculate the uncertainty in the beam energy E and the centre of mass

energy W if the radius of curvature of the storage ring is R = 100 m. We
have:

δE =

(
55

32
√

3

�c mec
2

2R
γ4

)1/2

What does this uncertainty in the energy tell us about the experimental
measurement of the Υ (Use the information given in Part b)?

b) Integrate the Breit-Wigner formula across the region of energy where the
Υ (1S) resonance is found. The experimentally observed value of this integral
for hadronic final states is

∫
σ(e+e− → Υ → hadrons) dW ≈ 300 nbMeV.

The decay probabilities for Υ → �+�− (� = e, μ, τ) are each around 2.5 %.
How large is the total natural decay width of the Υ? What cross-section would
one expect at the resonance peak if there was no uncertainty in the beam
energy (and the resonance was not broadened by radiative corrections)?
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The discovery and the first theories of the weak interaction were based on
the phenomenology of β-decay. Bound states formed by the weak interaction
are not known, in contrast to those of the strong, electromagnetic and gravi-
tational interactions. The weak interaction is in this sense somewhat foreign.
We cannot, for example, base its description on any analogous phenomena
in atomic physics. The weak interaction is mediated by exchange of W and
Z0 bosons and is responsible for the decay of quarks and leptons. In contrast
to the strong, electromagnetic and gravitational interaction that are medi-
ated by massless bosons, the exchange bosons of the weak interaction are
heavy, on the order of 100 GeV/c2. Even though the exchange bosons of the
weak interaction couple to the quarks and leptons with approximately equal
strength as the photons to the charges, at low energies (low as compared to
100 GeV), due to the heavy exchange boson masses the interaction appears
point like and weak.

In scattering experiments weak interaction effects are difficult to observe.
Reactions of particles which are solely subject to the weak interaction (neutri-
nos) have extremely tiny cross-sections. In scattering experiments involving
charged leptons and hadrons the effects of the weak interaction are overshad-
owed by those of the strong and electromagnetic interactions. Thus, most
of our knowledge of the weak interaction has been obtained from particle
decays.

The first theoretical description of β-decay, due to Fermi [Fe34], was con-
structed analogously to that of the electromagnetic interaction. With some
modifications, it is still applicable to low-energy processes. Further milestones
in the investigation of the weak interaction were the discovery of parity vi-
olation [Wu57], of different neutrino families [Da62] and of CP violation in
the K0 system [Ch64].

Quarks and leptons are equally affected by the weak interaction. In the
previous chapter we discussed the quarks at length. We now want to treat
the leptons in more detail before we turn to face the phenomena of the weak
interaction.
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10.1 Properties of Leptons

Charged leptons. In our treatment of e+e−-scattering we encountered the
charged leptons: the electron (e), the muon (μ) and the tau (τ) as well as
their antiparticles (the e+, μ+ and τ+) which have the same masses as their
partners but are oppositely charged.

The electron and the muon are the lightest electrically charged particles.
Charge conservation thus ensures that the electron is stable and that an
electron is produced when a muon decays. Muon decay proceeds via

μ− → e− + νe + νμ.

In a very few cases an additional photon or e+e− pair is produced. The
energetically allowed process

μ− �→ e− + γ ,

is, on the other hand, never observed. The muon is therefore not just an
excited state of the electron.

The τ -lepton is much heavier than the muon and, indeed, more so than
many hadrons. Thus it does not have to decay only into lighter leptons

τ− → e− + νe + ντ τ− → μ− + νμ + ντ ,

but can also turn into hadrons, e.g., into a pion and a neutrino

τ− → π− + ντ .

In fact more than half of all τ decays follow the hadronic route [Ba88].

Neutrinos. We have already seen several processes in which neutrinos are
produced: nuclear β-decay and the decays of charged leptons. Neutrinos are
electrically neutral leptons and, as such, do not feel the electromagnetic or
strong forces. Since neutrinos interact only weakly, they can as a rule only be
detected indirectly in processes where charged particles are produced. Typi-
cally the energy, momentum and spin carried away or brought in by the neu-
trino is determined by measuring the other particles involved in the reaction
and applying conservation laws. For example, the sums of the energies and
angular momenta of the observed particles in β-decays indicate that another
particle as well as the electron must also have been emitted. Experiments are
consistent with the assumption that neutrinos and antineutrinos are distinct
particles. The antineutrinos produced in a β-decay

n → p + e− + νe

for example, only induce further reactions in which positrons are produced
and do not lead to electrons being created:
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νe + p → n + e+

νe + n �→ p + e− .

Neutrinos and antineutrinos produced in charged pion decays

π− → μ− + νμ

π+ → μ+ + νμ

also behave differently. They induce reactions in which muons are created
but never produce electrons [Da62]. This implies that the electron-neutrino
νe and the muon-neutrino νμ are different sorts of neutrinos: an electron-
neutrino, which is associated with the creation and annihilation of electrons,
and a muon-neutrino, which we similarly associate with the muon. In a recent
experiment tau-leptons have similarly been produced in tau-neutrino induced
reactions. Thus, we may conclude that there are three sorts of neutrinos.

It has also been demonstrated that neutrinos from π+ decays only gener-
ate μ−’s, while antineutrinos from π− decays only produce μ+’s.

Neutrino oscillations. The kinematical analysis of the weak decays have
so far only provided experimental upper bounds for the rest masses of the
neutrinos and thus direct measurements do not exclude massless neutrinos.
We will return to measurements of the electron-neutrino mass in Sect. 17.6.

But there is strong evidence for neutrinos to have non-vanishing masses!
Since there are no direct measurements of the masses, we will need different
experimental evidence to corroborate this statement.

Experiments which seek to indirectly detect any non-zero neutrino mass,
look for transitions (oscillations) between the eigenstates of the flavour fam-
ilies, |νe〉, |νμ〉 and |ντ 〉, either in neutrino beams from reactors and acceler-
ators or in solar/atmospheric neutrinos [Ku89].

If neutrinos really were exactly massless then any mixture of neutrinos
would also be an eigenstate of the mass operator and the mass eigenstates
|ν1〉, |ν2〉 and |ν3〉 could be defined via |νe〉, |νμ〉 and |ντ 〉 to be the exact
“partners” of |e〉, |μ〉 and |τ〉. No flavour oscillations should then be observed
in neutrino beams.

If neutrinos do have masses, flavour oscillations can take place. This is a
well known quantum mechanical effect and in this book we will also discuss
one of the most thoroughly investigated cases of it: oscillations in the K0 and
K̄0 system (see Sect. 14.4).

Experiments with solar neutrinos (see Sect. 19.5 for how neutrinos are
created in the sun) indicate that such oscillations do take place: the measured
flux of solar neutrinos [Ha96] is only about half the amount predicted by solar
models which describe in detail the elementary particle reactions and energy
production in the sun. A lingering doubt that the solar models might have
been wrong has been recently removed by two experiments [Ah01, Fu01].
In these experiments the total solar neutrino flux is measured via reactions
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mediated by Z0 exchange (see Sect. 10.2), which are independent of the
neutrino flavour.

In the Sudbury Neutrino Observatory [Ah01] (Canada) using a Čerenkov
detector with 1000 tons of heavy water located 2000 meters below ground
level the following reactions can be simultaneously measured:

νe,μ,τ + d → p + p + e−

νe,μ,τ + d → p + n + νe,μ,τ

νe,μ,τ + e → νe,μ,τ + e.

The first reaction measures only νe because the energy of the neutrinos
is too low to produce μ or τ . The second reaction is flavour independent and
measures the total neutrino flux. In fact, the experiment shows that the total
neutrino flux is three times larger than the νe flux alone. The third reaction
is more sensitive to νe but may also be used to measure the total flux.

An anomaly has also been observed in the measurement of atmospheric
neutrinos by terrestrial detectors in Kamioka, Japan. The experiment has
been done by the Super-Kamiokande, a Čerenkov detector of 32 000 tons
water located 1000 meters below ground level. The atmospheric neutrinos
are produced in the following decay-sequence:

π+ → μ+ + νμ

μ+ → ν̄μ + e+ + νe

and corresponding decays of the antiparticles. The initial ratio between the
two sorts of neutrinos is [n(νμ) + n(ν̄μ)]/[n(νe) + n(ν̄e)] = 2.

The energies of the atmospheric neutrinos are determined by measuring
the charged particles produced in the inverse reactions. The analysis of the
data we discussed here were done for neutrinos with energies of the order of
one GeV.

The production rate of νμ’s by cosmic rays in the atmosphere has been
seen to depend strongly upon whether the neutrinos only pass through the
atmosphere or first traverse the entire body of the earth. Experimentally a
reduction of a factor of two for the flux of νμ is observed [Fu98] for neutrinos
coming from the opposite side of the earth. The earth is so transparent to
neutrinos that the flux should not be noticeably weakened by it. The reduc-
tion is attributed to the oscillation of νμ into ντ . At the same time the flux
of the atmospheric νe’s does not show any indication of oscillations.

Another piece of information comes from a recent experiment observing
the oscillations of anti-neutrinos produced by nuclear reactors. In Kamioka,
KamLAND, a smaller detector (1 000 tons of liquid scintillator, which emits
light when a charged particle passes through) is sensitive to anti-electron-
neutrinos emitted by all the nuclear reactors nearby (∼ 200 km) in South
Korea and Japan. The intensity of the reactor anti- neutrinos peaks at 4-5
MeV. Thus, low energy neutrinos oscillations are observed at a distance of
∼ 200 km.
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The existence of neutrino oscillations indicates two important properties
of neutrinos: they have a non-vanishing mass and the neutrino eigenstates of
the weak interaction are a superposition of the mass eigenstates. The mixing
of the neutrinos of different flavours is strong, opposite to the weak mixing
of the quarks of the different families. The mass scales coming from these
results will be discussed below (10.4).

The six leptons. Despite intensive searches at ever higher energies, no
further leptons have yet been found. The lower bound for the mass of any
further charged lepton is currently 42.8 GeV/c2. In Sect. 11.2 we will see
that there cannot be more than three light neutrinos (mν  10 GeV/c2). To
summarise: we now know six different leptons. These are three electrically
charged particles (e, μ, τ) and three neutral ones (νe, νμ, ντ ).

Just like the quarks, the leptons fall into three families, each of which is
made up of two particles whose charges differ by one unit. The charged leptons
have, like the quarks, very different masses (mμ/me ≈ 207, mτ/mμ ≈ 17).
We still do not have a generally accepted reason for why the fundamental
fermions come in three families and we do not understand their masses.

Lepton number conservation. In all the reactions we have mentioned
above, the creation or annihilation of a lepton was always associated with
the creation or annihilation of an antilepton of the same family. As with the
baryons, we therefore have a conservation law: in all reactions the number
of leptons of a particular family minus the number of the corresponding
antileptons is conserved. We write

L� = N(�) −N(�) +N(ν�) −N(ν�) = const. where � = e, μ, τ. (10.1)

The sum L = Le+Lμ+Lτ is called lepton number and the L�’s are individually
referred to as lepton family numbers. Note though that the lepton-family
number is conserved at every interaction vertex. However, neutrinos oscillate
when in flight, so only the lepton number as a whole is truly conserved. In
consequence the following production reactions are allowed or forbidden:

Allowed Forbidden
p + μ− → νμ + n p + μ− �→ π0 + n

e+ + e− → νμ + νμ e+ + e− �→ νe + νμ

π− → μ− + νμ π− �→ e− + νe
μ− → e− + νe + νμ μ− �→ e− + νμ + νe
τ− → π− + ντ τ− �→ π− + νe .

Experimentally the upper limits for any violation of these conservation
laws in electromagnetic or weak processes are very small. For example we
have [PD94]

Γ (μ± → e±γ)
Γ (μ± → all channels)

< 5 · 10−11
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Γ (μ± → e±e+e−)
Γ (μ± → all channels)

< 1 · 10−12. (10.2)

All the allowed reactions that we have listed above proceed exclusively
through the weak interaction, since in all these cases neutrinos are involved
and these particles are only subject to the weak interaction. The opposite
conclusion is, however, incorrect. We will see in the following section that
there are indeed weak processes which involve neither neutrinos nor any other
leptons.

10.2 The Types of Weak Interactions

Recall that the weak interaction can transform a charged lepton into its
family’s neutrino and that it can produce a charged lepton (antilepton) and
its antineutrino (neutrino). In just the same manner quarks of one flavour
can be transformed into quarks with another flavour in weak interactions: a
typical example of this is the transformation of a d-quark into a u-quark —
this takes place in the β-decay of a neutron. In all such reactions the identity
of the quarks and leptons involved changes and, simultaneously, the charge
changes by +1e or −1e. The term charged current was coined to describe
such reactions. They are mediated by charged particles, the W+ and W−.

For a long time only this sort of weak interaction was known. Nowadays
we know that weak interactions may also proceed via the exchange of an
additional, electrically neutral particle, the Z0. In this case the quarks and
leptons are not changed. One refers to neutral currents.

The W± and the Z0 are vector bosons, i.e., they have spin one. Their
masses are large: 80 GeV/c2 (W±) and 91 GeV/c2 (Z0). We will return to
their experimental detection in Sect. 11.1. In this chapter we will, follow-
ing the historical development, initially concern ourselves with the charged
currents. These may be straightforwardly divided up into three categories
(Fig. 10.1): leptonic processes, semileptonic processes and non-leptonic pro-
cesses.

Fig. 10.1. The three sorts of charged current reactions: a leptonic process (left), a
semileptonic process (middle) and a non-leptonic process (right).
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Leptonic processes. If the W boson only couples to leptons, one speaks of
a leptonic process. The underlying reaction is

�+ ν� ←→ �′ + ν�′ .

Examples of this are the leptonic decay
of the τ -lepton:

τ− → μ− + νμ + ντ

τ− → e− + νe + ντ

and the scattering process

νμ + e− → μ− + νe.

W−
ντ

τ−

μ−ν−μ

Semileptonic processes. Semileptonic processes are those where the
exchanged W boson couples to both lep-
tons and quarks. The fundamental pro-
cess here is

q1 + q2 ←→ �+ ν�.

Examples of this are charged pion de-
cay, the decay of the K− or the β-decay
of the neutron:

Hadron description Quark description

π− → μ− + νμ d + u → μ− + νμ

K− → μ− + νμ s + u → μ− + νμ

n → p + e− + νe d → u + e− + νe .

The β-decay of a neutron may be reduced to the decay of a d-quark in
which the two other quarks are not involved. The latter are called spectator
quarks. Inverse reactions are processes such as K capture p+e−→n+νe and
inverse β-decay νe +p → n+e+ or νe +n → p+e−. (Anti-) Neutrinos were
directly detected for the first time in the second of these reactions [Co56a]
—antineutrinos from the β−-decay of neutron-rich fission products were seen
to react with hydrogen. The second reaction may be used to detect solar and
stellar neutrinos emanating from β+-decays of proton-rich nuclei produced in
fusion reactions. A further example of a semileptonic process is deep inelastic
neutrino scattering, which we will treat in more detail in Sect. 10.8.
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Non-leptonic processes. Finally non-leptonic processes do not involve lep-
tons at all. The basic reaction is

q1 + q2 ←→ q3 + q4 .

Charge conservation requires that the only allowed quarks combinations have
a total charge ±1e. Examples are the hadronic decays of baryons and mesons
with strangeness, such as the decay of the Λ0 hyperon into a nucleon and a
pion, or that of K+(us) into two pions:

u            d

W−

u       d       d

u       d       s

n

Λ0

u

π0

u

W−

u       d       u

u       d       s

p

Λ0

π−

W+

u       u

u             s

Κ+

π+π0

d              u

10.3 Coupling Strength of the Weak Interaction

Charged currents. We now want to deal with charged currents in a more
quantitative manner. We will treat leptonic processes in what follows since
leptons, in contrast to quarks, exist as free particles which simplifies matters.

As with Mott scattering or e+e−-annihilation, the transition matrix ele-
ment for such processes is proportional to the square of the weak charge g
to which the W Boson couples and to the propagator (4.23) of a massive
spin-one particle:

Mfi ∝ g · 1
Q2c2 +M2

Wc
4
· g

Q2→ 0
−−−−→ g2

M2
Wc

4
. (10.3)

The difference to an electromagnetic interaction is seen in the finite
mass of the exchange particle. Instead of the photon propagator (Qc)−2,
we see a propagator which is almost a constant for small enough momenta
Q2 M2

Wc
2. We will see in Sect. 11.2 that the weak charge g and the elec-

tric charge e are of a similar size. The very large mass of the exchange
boson means that at small Q2 the weak interaction appears to be much
weaker than the electromagnetic interaction. It also means that its range
�/MWc ≈ 2.5 · 10−3 fm is very limited.
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In the approximation of the small four-momentum transfer one may then
describe this interaction as a point-like interaction of the four particles in-
volved. This was in fact the original description of the weak interaction before
the idea of the W and Z bosons was brought in. The coupling strength of this
interaction is described by the Fermi constant GF, which is proportional to
the square of the weak charge g, very much as the electromagnetic coupling
constant α = e2/(4πε0�c) is proportional to the electric charge e. It is so
defined that GF/(�c)3 has dimensions of [1/energy2] and is related to g by

GF√
2

=
πα

2
· g

2

e2
· (�c)3

M2
Wc

4
. (10.4)

The decay of the muon. The most exact value for the Fermi constant is
obtained from muon decay. The muon decays, as explained in Sect. 10.1, by

μ− → e− + νe + νμ , μ+ → e+ + νe + νμ .

Since the muon mass is tiny compared to that of the W boson, it is reasonable
to treat this interaction as point-like and describe the coupling via the Fermi
constant.

W+

e+

μ+

νμ

νe

g

μ+

νμ e+

νe

GF

g

In this approximation the lifetime of the muon may be calculated with
the help of the golden rule, if we use the Dirac equation and take into account
the amount of phase space available to the three outgoing leptons. One finds
that the decay width is:

Γμ =
�

τμ
=

G2
F

192π3(�c)6
· (mμc

2)5 · (1 + ε) . (10.5)

The correction term ε, which reflects higher order (radiative) corrections and
phase space effects resulting from the finite electron mass, is small (see Eq. 5
in [Ma91]). It should be noted that the transition rate is proportional to
the fifth power of the energy and hence the mass of the decaying muon. In
Sect. 15.5 we will show in detail how the phase space may be calculated and
how the E5-dependence can be derived (in the example of the β-decay of the
neutron).
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The muon mass and lifetime have been measured to a high precision:

mμ = (105.658 389 ± 0.000 034) MeV/c2 ,
τμ = (2.197 035 ± 0.000 040) · 10−6 s . (10.6)

This yields a value for the Fermi constant

GF

(�c)3
= (1.166 39 ± 0.000 01) · 10−5 GeV−2. (10.7)

Neutrino-electron scattering. Neutrino-electron scattering is a reaction
between free, elementary particles. It proceeds exclusively through the weak
interaction. We can discuss the effects of the effective coupling strength GF

on the cross-section of this reaction and show why the weak interaction is
called “weak”.

In the diagram below the scattering of muon-neutrinos off electrons in
which the νμ is changed into a μ− is shown.

We have chosen this process as our

W+

e−

μ−

νμ

νe
example since it can only take place
via W-exchange. Calculating νe-e−

scattering is more complicated since
both Z- and W-exchange lead to the
same final state and thus interfere
with each other.

For small four-momenta the total
cross-section for neutrino-electron
scattering is proportional to the
square of the effective coupling con-

stant GF. Similarly to our discussion of the total cross-section in e+e−

annihilation in Sect. 9.1, the characteristic length and energy scales of the
reaction (the constants �c and the centre of mass energy

√
s) must enter the

cross-section in such a way as to yield the correct dimensions ([area]):

σ =
G2

F

π(�c)4
· s , (10.8)

where s may be found in the laboratory frame from (9.3) to be s = 2mec
2Eν .

From (10.7) one finds that the cross-section in the laboratory frame is:

σlab = 1.7 · 10−41 cm2 · Eν/GeV. (10.9)

This is an extremely tiny cross-section. To illustrate this point we now es-
timate the distance L which a neutrino must traverse until it weakly interacts
with an electron. The electron density in iron is

ne =
Z

A

NA ≈ 22 · 1023 cm−3 . (10.10)
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Neutrinos produced in the sun via hydrogen fusion have typically an energy of
around 1 MeV. Their mean free path is therefore L = (ne ·σ)−1 = 2.6 ·1017 m,
which is about 30 light years! 1

At very high energies the simple formula (10.9) is no longer valid, since the
cross-section would limitlessly grow with the neutrino energy. This of course
will not happen in practise: at large four momentum transfers Q2 � M2

Wc
2

the propagator term primarily determines the energy dependence of the cross-
section. A point-like interaction approximation no longer holds. At a fixed
centre of mass energy

√
s the cross-section falls off, as in electromagnetic

scattering, as 1/Q4. The total cross-section is on the other hand:

σ =
G2

F

π(�c)4
· M2

Wc
4

s+M2
Wc

4
· s . (10.11)

The cross-section does not then increase linearly with s, as the point-like
approximation implies, rather it asymptotically approaches a constant value.

Neutral currents. Up to now we have only considered neutrino-electron
scattering via W+ exchange, i.e., through charged currents (left side of the
figure). TheW+ carries away the positive charge and transforms the electron-
neutrino to an electron. Neutrinos and electrons can, however, interact via

e

e

e Z0

νe

W+

Z0-exchange, i.e., neutral current interactions are possible (right side of the
figure). The Z0 transforms neither charge nor mass.

In general case the interactions via neutral currents will be hard to ob-
serve as they are masked by much stronger electromagnetic and in the case of
quarks by strong interaction. In the electron-electron scattering one has a su-
perposition of the electromagnetic and weak interaction The strength of neu-

e

e γ

e

e e

+
e

e

e

e

e

Z0

tral currents and electromagnetic interaction become comparable first at the
centre of mass energy on the order of the Z0 mass. The interference between
the neutral currents end the electromagnetic interaction has been beautifully
demonstrated in experiments at the electron-positron collider LEP at CERN.
1 The absorption of neutrinos by the atomic nuclei is neglected here. This is a

reasonable approximation for neutrino energies less than 1 MeV, but would need
to be modified for higher energies.
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Elastic muon-neutrino scattering off electrons. The muon-neutrino
scattering off electrons is particularly suitable for investigating the weak in-
teraction via Z0-exchange. This is because conservation of lepton family num-
ber precludes W-exchange. Reactions of this kind were first seen in 1973 at
CERN [Ha73] and was the first experimental signal for weak neutral currents.

Z0

e−

e−

νμ

νμ

νμ e− → νμ e−

Let us estimate the total cross section for νμ e− → νμ e− for small four-
momenta (10.8). We just repeat the calculation we did for the scattering via
charged currents but modifying the coupling GF . The only difference between
the two interactions is in the mass of the two exchange bosons. The mass of
the exchange boson squared appears in the propagator, so that the GF should
be multiplied by M2

W /M
2
Z0 ≈ 0.78. The total cross section at low energies

reads then

σ =
M4

W

M4
Z0

· G2
F

π(�c)4
· s , (10.12)

or
σ(νμ e− → νμ e−) ≈ 0.6 · σ(νμ e → μ− νe) . (10.13)

Universality of the weak interaction. If we assume that the weak charge
g is the same for all quarks and leptons, then (10.5) must hold for all possible
charged decays of the fundamental fermions into lighter leptons or quarks.
All the decay channels then contribute equally, up to a phase space correction
coming from the different masses, to the total decay width.

We choose to consider the example of the decay of the τ -lepton. This
particle has essentially three routes open to it

τ− → ντ + νe + e−

τ− → ντ + νμ + μ−

τ− → ντ + u + d (10.14)

whose widths are Γτe ≈ Γτμ and Γτdu ≈ 3Γτμ. The factor of three follows from
the ud-pair appearing in three different colour combinations (rr̄, bb̄, gḡ). The
weak decay-branch with the strange quark was neglected in this estimate.

From the mass term in (10.5) we have:

Γτe = (mτ/mμ)5 · Γμe , (10.15)

and the lifetime is thus predicted to be:
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ττ =
�

Γτe + Γτμ + Γτdu
≈ τμ

5 · (mτ/mμ)5
≈ 3.1 · 10−13 s . (10.16)

Experimentally we find [PD98]

τ exp
τ = (2.900 ± 0.012) · 10−13 s . (10.17)

This good agreement confirms that quarks occur in three different colours and
is strongly supportive of the quark and lepton weak charges being identical.

10.4 The Quark Families

We have claimed that the weak charge is universal, and that all the weak
reactions which proceed through W exchange can therefore be calculated
using the one coupling constant g or GF. The lifetime of the τ -lepton seemed
to illustrate this point: our expectations, based on the assumption that the
W boson couples with the same strength to both quarks and leptons were
fulfilled. However, the lifetime does not contain the decay widths for leptonic
and hadronic processes separately, but only their sum. Furthermore it is very
sensitive to the mass of the τ -lepton. Hence, this is not a particularly precise
test of weak charge universality.

The coupling to quarks can be better determined from semi-leptonic
hadron decays. This yields a smaller value for the coupling than that ob-
tained from muon data. If a d-quark is transformed into a u-quark, as in
the β-decay of the neutron, the coupling constant appears to be about 4 %
smaller. In processes in which an s-quark is transformed into a u-quark, as
in Λ0 decay, it even appears to be 20 times smaller.

The Cabibbo angle. An explanation of these findings was proposed by
Cabibbo as early as 1963 [Ca63], at a time at which quarks had not been
introduced. We will re-express Cabibbo’s hypothesis in modern terms. We
may group the quarks into families, according to their charges and masses:

(
u
d

) (
c
s

) (
t
b

)
.

Quark transitions in the weak decays in fact are observed predominantly
within a family but, to a lesser degree, from one family to another. To ac-
count for the transitions between the families one has chosen to define as the
“partner” of the flavour eigenstate |u〉 a state |d〉, which is a linear combina-
tion of |d〉 and |s〉. Similarly the partner of the c-quark is a linear combination
of |s〉 and |d〉, orthogonal to |d′〉, which we call |s′〉.

The coefficients of these linear combinations can be written as the cosine
and sine of an angle called the Cabibbo angle θC. The quark eigenstates |d′〉
and |s′〉 of W exchange are related to the eigenstates |d〉 and |s〉 of the strong
interaction, by a rotation through θC:
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|d′ 〉 = cos θC |d 〉 + sin θC | s 〉
| s′ 〉 = cos θC | s 〉 − sin θC |d 〉 , (10.18)

which may be written as a matrix:
(
|d′ 〉
| s′ 〉

)
=

(
cos θC sin θC

− sin θC cos θC

)
·
(
|d 〉
| s 〉

)
. (10.19)

Whether the state vectors |d〉 and |s〉 or the state vectors |u〉 and |c〉 are
rotated, or indeed both pairs simultaneously, is a matter of convention alone.
Only the difference in the rotation angles is of physical importance. Usually
the vectors of the charge −1/3 quarks are rotated while those of the charge
+2/3 quarks are left untouched.

Experimentally, θC is determined by comparing the lifetimes and branch-
ing ratios of the semi-leptonic and hadronic decays of various particles as
shown in the sketch. This yields:

sin θC ≈ 0.22 , and cos θC ≈ 0.98 . (10.20)

The transitions c ↔ d and s ↔ u, as compared to c ↔ s and d ↔ u, are
therefore suppressed by a factor of

sin2 θC : cos2 θC ≈ 1 : 20 . (10.21)

νμ

μ–

W –

νe e–

g
g

Mif ≈ g2.cos θc Mif ≈ g2.cos θc
.sinθcMif ≈ g2

W –

νe e–

gg.cos θc

u

ddu

p

n

p

Λ0

u

sdu

W –

g.cosθcg.sinθc

u d

π–

du du

We can now make our treatment of τ decay more precise. In (10.14), we
stated that τ → ντ + u + d is “essentially” the only hadronic decay of the τ .
But τ → ντ + u + s is also energetically possible. Whereas the former decay
is only slightly suppressed by a factor of cos2 θC, the latter is faced with a
factor of sin2 θC. However, since cos2 θC and sin2 θC add to one our conclusion
concerning the lifetime of the τ -lepton is not affected, as long as we ignore
the difference in the quark masses.

The Cabibbo-Kobayashi-Maskawa matrix. Adding the third generation
of quarks, the 2 × 2 matrix of (10.19) is replaced by a 3 × 3 matrix [Ko73].
This is called the Cabibbo-Kobayashi-Maskawa matrix (CKM matrix):
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⎛

⎝
|d′ 〉
| s′ 〉
|b′ 〉

⎞

⎠ =

⎛

⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎠ ·

⎛

⎝
|d 〉
| s 〉
|b 〉

⎞

⎠ . (10.22)

The probability for a transition from a quark q to a quark q′ is proportional
to |Vqq′ |2, the square of the magnitude of the matrix element.

The matrix elements are by now rather well known [Ma91]. They are
correlated since the matrix is unitary. The total number of independent pa-
rameters is four: three real angles and an imaginary phase. The phase af-
fects weak processes of higher order via the interference terms. CP violation
(cf. Sect. 14.4) is attributed to the existence of this imaginary phase [Pa89].

The following numbers represent the 90 %–confidence limits on the mag-
nitudes of the matrix elements [PD98]:

(
|Vij |

)
=

⎛

⎜
⎝

0.9745 · · · 0.9760 0.217 · · · 0.224 0.0018 · · · 0.0045

0.217 · · · 0.224 0.9737 · · · 0.9753 0.036 · · · 0.042

0.004 · · · 0.013 0.035 · · · 0.042 0.9991 · · · 0.9994

⎞

⎟
⎠ . (10.23)

The diagonal elements of this matrix describe transitions within a family;
they deviate from unity by only a few percent. The values of the matrix
elements Vcb and Vts are nearly one order of magnitude smaller than those of
Vus and Vcd. Accordingly, transitions from the third to the second generation
(t → s, b → c) are suppressed by nearly two orders of magnitude compared
to transitions from the second to the first generation. This applies to an even
higher degree for transitions from the third to the first generation. The direct
transition b → u was detected in the semi-leptonic decay of B mesons into
non-charmed mesons [Fu90, Al90, Al91].

Weak quark decays only proceed through W exchange. Neutral currents
which change the quark flavour (e. g., c → u) have thus far not been observed
and are taken to be zero.
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10.5 The Lepton families

The leptonic flavor mixing matrix. As indicated out above, neutrino os-
cillations show that neutrinos have non-vanishing masses and that the flavour
families |νe〉, |νμ〉 and |ντ 〉, which are eigenstates of the weak interaction, are
not eigenstates of the mass operator which we write as ν1, ν2 and ν3. The
neutrino eigenstates of the weak interaction are a superposition of the mass
eigenstates in a similar way to d′, s′ and b′ being a superposition of the
strong interaction eigenstates d, s and b. Remember, the mass eigenstates are
the constant of the motion and because they differ, the relative phases of
these components change with time. In analogy to the CKM matrix, we can
introduce a unitary 3×3 matrix relating the neutrino weak eigenstates to the
mass eigenstates:

⎛

⎝
| νe 〉
| νμ 〉
| ντ 〉

⎞

⎠ =

⎛

⎝
Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎞

⎠ ·

⎛

⎝
| ν1 〉
| ν2 〉
| ν3 〉

⎞

⎠ . (10.24)

In this matrix (10.24) we have replaced the V ’s of 10.22 by U ’s, the d’, s’
and b’ by νe, νμ and ντ and also d, s and b by ν1, ν2 and ν3.

A possible neutrino mixing has been theoretically studied prior to the
observed neutrino oscillation. B. Pontecorvo was the first to consider the
possibility of neutrino-antineutrino oscillations ([Po57]). Maki, Nakagawa and
Sakata discussed a possible flavour mixing for neutrinos ([Ma62]).

The values of the matrix elements Uij are deduced from the observed
neutrino oscillations. To keep the discussion as simple as possible, we will
do this for just two neutrino flavours and ask what happens to the solar
neutrinos after they have traveled for a time t. The time dependent wave
function of the electron neutrino is

|νe(t) 〉 = Ue1e−iEν1 t/�|ν1 〉 + Ue2e−iEν2 t/�|ν2 〉 . (10.25)

Neutrinos are relativistic and their energy can be approximated by

Eνi
=

√
p2c2 +m2

νi
c4 ≈ pc

(
1 +

1
2
m2

νi
c2

p2

)
. (10.26)

The probability of finding an electron neutrino after time t in the beam is
then

Pνe→νe(t)=〈νe(t)|νe(t)〉=|Ue1|2+|Ue2|2+2|Ue1||Ue2| cos

(
1
2

(
m2

ν1
−m2

ν2

)
c4

�pc2
ct

)

.

(10.27)
From the observed oscillations one can obtain Δm2

21 = m2
ν1

− m2
ν2

if one
measures the oscillation length, L. This is the distance when the phase of the
cosine in (10.27) becomes 2π and it takes place at the time t = L/c:
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L = 4π
�pc2

Δm2
21c

4
. (10.28)

The best present estimate from solar neutrinos is 0.5 · 10−5 eV2/c2<
Δm2

SUN < 2 ·10−4 eV2/c2. The oscillation length for the atmospheric neutri-
nos gives the following limits: 1.4·10−3 eV2/c2< Δm2

ATM < 5.1·10−3 eV2/c2.
We identify Δm2

SUN = Δm2
21 and Δm2

ATM = |Δm2
31| = |Δm2

32|.
Strong attenuations observed in the solar and the atmospheric neutrino

fluxes mean that the neutrinos of different flavours mix strongly. Taking into
account all the experimental constraints dictated by the present oscillation
measurements, the best-fit value of the leptonic mixing matrix U is [Gi03]

U =

⎛

⎝
−0.83 0.56 0.00
0.40 0.59 0.71
0.40 0.59 −0.71

⎞

⎠ . (10.29)

In (10.29) we omitted the large errors of single matrix elements as we
want to show only the main features of the leptonic mixing matrix.

Such a matrix, with all elements being large (except Ue3) is called “bi-
large”. It is very different from the quark mixing matrix, in which the mixing
is very small. Such a difference in the quark and leptonic mixing might be
an important piece of information for our understanding of the physics be-
yond the Standard Model (19.4), which presumably involves some sort of
quark-lepton unification.

Following B. Kayser ([Ka05]) the main features of the leptonic flavor
mixing matrix can be presented graphically (Fig. 10.2) by approximating the
flavor-j fraction of each mass eigenstate i by the square of the matrix element
|Uij |2 (10.29).

Fig. 10.2. A tree-neutrino squared-mass spectrum that accounts for the observed
flavor mixing of solar, reactor, and atmospheric neutrinos. The νe fraction of each
mass state is crosshatched, the νμ fraction is indicated by by right-leaning hatching,
and the ντ fraction by the left-leaning hatching
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10.6 Majorana Neutrino?

The charged leptons and quarks are Dirac particles as the consequence of
their electric charge. Charged fermions and their antifermions have to have
the same mass. Consequently, the charged fundamental fermions obey the
four component Dirac equation.

The neutrinos are neutral and as there is no explicit lepton number con-
servation, their mass eigenstates can be a superposition of particles and an-
tiparticles. There is no a priori reason not to consider the possibility that the
neutrinos that we observe are not the Dirac neutrinos and the antineutrinos,
but the two helicity states of the same particle, named Majorana neutrino.
Majorana neutrinos are their own antiparticles. This scenario has been sug-
gested by Majorana long time ago.

The counterpart of the light Majorana neutrinos would be heavy neutri-
nos. In the Standard Model of Elementary Particles (Chap.12) it is expected
that the mechanism responsible for giving quarks and leptons their masses
would give the fermions of one particle family masses on the same order of
magnitude, to quarks and to leptons massesMq ≈Ml = Mq,l. In some exten-
sions of the Standard Model, it is natural for the masses of the light neutrinos
Mν and the heavy neutrinos MN to be related to the Dirac mass Mq,l by

MνMN ≈M2
q,l. (10.30)

The interpretation of this relation is the following: Neutrinos got first the
Dirac mass Mq,l, on the same order as the charged fermions, with neutrinos
and antineutrinos degenerate in mass. Because the lepton number is explicitly
not conserved, the particles and antiparticles can mix, and the degeneracy
was removed in one of many phase transitions of the early universe. The light
Majorana neutrinos were pushed way down in the mass, the heavy way up.

This scenario with the Majorana neutrino is appealing to theorists for
many reasons. It explains why the neutrinos have many orders of magni-
tude smaller masses than the charged fermions, the lepton number non-
conservation, and probably CP violation in the decay of the heavy Majo-
rana neutrinos, could help to explain how it came to the matter antimatter
asymmetry in the early history of the universe.

Unfortunately, at present it seems that there is just one experiment that
can decide on the nature of the neutrino, the neutrinoless double beta decay,
we will discuss in section 17.7.

10.7 Parity Violation

A property unique to the weak interaction is parity violation. This means
that weak interaction reactions are not invariant under space inversion.

An example of a quantity which changes under a spatial inversion is he-
licity
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h =
s · p

|s| · |p| , (10.31)

which we introduced in Sect. 5.3. The numerator is a scalar product of an
axial vector (spin) and a vector (momentum). Whereas spin preserves its ori-
entation under mirror reflection, the direction of the momentum is reversed.
Thus helicity is a pseudoscalar, changing sign when the parity operator is
applied to it. An interaction which depends upon helicity is therefore not
invariant under spatial reflections.

In general, the operator of an interaction described by the exchange of a
spin-1 particle can have a vector or an axial vector nature. In order for an
interaction to conserve parity, and therefore to couple identically to both right
and left-handed particles, it must be either purely vectorial or purely axial. In
electromagnetic interactions, for example, it is experimentally observed that
only a vector part is present. But in parity violating interactions, the matrix
element has a vector part as well as an axial vector part. Their strengths
are described by two coefficients, cV and cA. The closer the size of the two
parts the stronger is the parity violation. Maximum parity violation occurs
if both contributions are equal in magnitude. A (V+A)–interaction, i. e.,
a sum of vector and axial interactions of equal strength (cV = cA), couples
exclusively to right-handed fermions and left-handed antifermions. A (V−A)–
interaction (cV =−cA) only couples to left-handed fermions and right-handed
antifermions.

As we will show, the angular distribution of electrons produced in the
decay of polarised muons exhibits parity violation. This decay can be used
to measure the ratio cV/cA. Such experiments yield cV =−cA =1 for the cou-
pling strength of W bosons to leptons. One therefore speaks of a V-minus-A
theory of charged currents. Parity violation is maximal. If a neutrino or an
antineutrino is produced by W exchange, the neutrino helicity is negative,
while the antineutrino helicity is positive. In fact all experiments are consis-
tent with neutrinos being always left-handed and antineutrinos right-handed.
We will describe such an experiment in Sect. 17.6.

For massive particles β = v/c < 1 and the above considerations must be
modified. On the one hand, massive fermions can be superpositions of right-
handed and of left-handed particles. On the other hand, right-handed and
left-handed states receive contributions with the opposite helicity, which in-
crease the more β decreases. This is because helicity is only Lorentz-invariant
for massless particles. For particles with a non-vanishing rest mass it is al-
ways possible to find a reference frame in which the particle is “overtaken”,
i.e., in which its direction of motion and thus its helicity are reversed.

CP conservation. It may be easily seen that if the helicity of the neutrinos
is fixed, then C-parity (“charge conjugation”) is simultaneously violated. Ap-
plication of the C-parity operator replaces all particles by their antiparticles.
Thus, left-handed neutrinos would be transformed into left-handed antineu-
trinos, which are not found in nature. Therefore physical processes which
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involve neutrinos, and in general all weak processes, a priori violate C-parity.
The combined application of space inversion (P) and of charge conjugation
(C), however, yields a process which is physically possible. Here, left-handed
fermions are transformed into right-handed antifermions, which interact with
equal strength. This is called the CP conservation property of the weak in-
teraction. The only known case in which CP symmetry is not conserved (CP
violation) will be discussed in Sect. 14.4.

Parity violation in muon decay. An instructive example of parity
violation is the muon decay μ− → e−+νμ+νe. In the rest frame of the muon,

the momentum of the electron is max-
imised if the momenta of the neutrinos are
parallel to each other, and antiparallel to
the momentum of the electron. From the
sketch it is apparent that the spin of the
emitted electron must be in the same di-
rection as that of the muon since the spins
of the (νe, νμ) pair cancel.

Experimentally it is observed that
electrons from polarised muon decays are
preferentially emitted with their spins op-

posite to their momentum; i. e., they are left-handed. This left-right asym-
metry is a manifestation of parity violation. The ratio of the vector to axial
vector fractions can be determined from the angular distribution [Bu85].

Helicity suppressed pion decay. Our second example is the decay of the
charged pion. The lightest hadron with electric charge, the π−, can only decay
in a semi-leptonic weak process, i.e., through a charged current, according to:

π− → μ− + νμ ,

π− → e− + νe .

The second process is suppressed, compared to the first one, by a factor of
1 : 8000 [Br92] (cf. Table 14.3). From the amount of phase space available,
however, one would expect the pion to decay about 3.5 times more often into
an electron than into a muon. This behaviour may be explained from helicity
considerations.

The particles emitted in such two-particle pion decays depart, in the cen-
tre of mass system, in opposite directions. Since the pion has spin zero, the

π−
μ− νμ

J = 0

spins of the two leptons must be opposite to
each other. Thus, the projections on the di-
rection of motion are either +1/2 for both,
or −1/2 for both. The latter case is impos-
sible as the helicity of antineutrinos is fixed.

Therefore, the spin projection of the muon (electron) is +1/2.
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If electrons and muons were massless, two-body pion decays would be
forbidden. A massless electron, or muon, would have have to be 100 % right-
handed, but W bosons only couple to left-handed leptons. Because of their
finite mass, electrons and muons with their spins pointing in their directions
of motion actually also have a left-handed component, which is proportional
to 1 − β. The W boson couples to this component. Since the electron mass
is so small, 1 − βe ≈ 1/2γ2 = 2.6 · 10−5 is very small (γ = E/me = 10−5) in
pion decay, compared to 1 − βμ = 0.72. Hence, the left-handed component
of the electron is far smaller than that of the muon, and the electron decay
is accordingly strongly suppressed.

10.8 Deep Inelastic Neutrino Scattering

Deep inelastic scattering of neutrinos off nucleons gives us information about
the quark distributions in the nucleon which cannot be obtained from electron
or muon scattering alone. In contrast to photon exchange, the exchange of W
bosons (charged currents) in neutrino scattering distinguishes between the
helicity and charged states of the fermions involved. This is then exploited
to separately determine the quark and antiquark distributions in the nuclei.

In deep inelastic neutrino scattering experiments, muon (anti)neutrinos
are generally used, which, as discussed in Sect. 10.7, stem from weak pion
and kaon decays. These latter particles can be produced in large numbers by
bombarding a solid block with highly energetic protons. Since (anti)neutrinos
have very small cross-sections the targets that are used (e.g., iron) are gener-
ally many meters long. The deep inelastic scattering takes place off both the
protons and the neutrons in the target.

νμ

μ–

W +

u,c (d,s)

d,s (u,c)

νμ

μ+

W –

u,c (d,s)

d,s (u,c)

When left handed neutrinos scatter off nucleons, the exchanged W+ can
only interact with the negatively charged, left handed quarks (dL, sL) and
negatively charged, right handed antiquarks (uR, cR) which are thereby trans-
formed into the corresponding (anti)quarks of the same family. In analogy to
our description of τ decay, we can neglect complications due to Cabibbo mix-
ing if the energies are large enough that we can ignore the differences in the
quark masses. Equivalently for the scattering of right handed antineutrinos,
the W− which is exchanged can only interact with the positively charged,
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left handed quarks (uL, cL) and positively charged, right handed antiquarks
(dR, sR).

The scattering off the quarks and antiquarks is characterised by different
angle and energy distributions for the outgoing leptons. This becomes plausi-
ble if one (analogously to our considerations in the case of Mott scattering in
Sect. 5.3) considers the extreme case of scattering through θc.m. = 180◦ in the
centre of mass frame for the neutrino and the quark. We choose the quanti-
sation axis ẑ to be the direction of the incoming neutrino’s momentum. Since
the W boson only couples to left handed fermions, both the neutrino and the
quark have in the high energy limit negative helicities and the projection of
the total spin on the ẑ axis is, both before and after scattering through 180◦

S3 = 0.

S3= 0

ν

μ–

Quark

Quark

ν

μ–

Antiquark

Antiquark

S3= – 1S3= 0

S3= +1

 before
  reaction

scattering
 through
   180˚

This also holds for all other scattering angles, i.e., the scattering is
isotropic. On the other hand if a left handed neutrino interacts with a right
handed antiquark, the spin projection before the scattering is S3 = −1 but
after being scattered through 180◦ it is S3 = +1. Hence scattering through
180◦ is forbidden by conservation of angular momentum. An angular depen-
dence, proportional to (1 + cos θc.m.)2, is found in the cross-section. In the
laboratory frame this corresponds to an energy dependence proportional to
(1 − y)2 where

y =
ν

Eν
=
Eν − E′

μ

Eν
(10.32)

is that fraction of the neutrino’s energy which is transferred to the quark.
Completely analogous considerations hold for antineutrino scattering.

The cross-section for neutrino-nucleon scattering may be written analo-
gously to the cross-section for neutrino-electron scattering (10.9) if we take
into account the fact that the interacting quark only carries a fraction x of the
momentum of the nucleon and that the centre of mass energy in the neutrino-
quark centre of mass system is x times smaller than in the neutrino-nucleon
system. One finds:

d2σ

dxdy
=

G2
F

π(�c)4
·
(

M2
Wc

4

Q2c2 +M2
Wc

4

)2

· 2Mpc
2Eν · x ·K (10.33)

where
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Fig. 10.3. Differential cross-sections dσ/dy for neutrino and antineutrino scattering
off nucleons as a function of y (in arbitrary units).

K =
{
d(x) + s(x) + (u(x) + c(x))(1 − y)2 for ν-p scattering,
d(x) + s(x) + (u(x) + c(x))(1 − y)2 for ν-p scattering.

(10.34)

Figure 10.3 shows the dependence of the integrated (over x) cross-section
as a function of y. For neutrino scattering we have two contributions: a large
constant contribution from scattering off the quarks, and a small contribution
from scattering off the antiquarks which falls off as (1 − y)2. In antineutrino
scattering one observes a strong (1 − y)2 dependence from the interaction
with the quarks and a small energy independent part from the antiquarks.

Suitable combinations of the data from neutrino and antineutrino scat-
tering off protons and neutrons can be used to separate the distributions of
valence and sea quarks shown in Fig. 7.7.
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Problems
1. Particle reactions

Show whether the following particle reactions and decays are possible or not.
State which interaction is concerned and sketch the quark composition of the
hadrons involved.

p + p → π+ + π− + π0 + π+ + π−

p + K− → Σ+ + π− + π+ + π− + π0

p + π− → Λ0 + Σ
0

νμ + p → μ+ + n
νe + p → e+ + Λ0 + K0

Σ0 → Λ0 + γ
2. Parity and C-parity

a) Which of the following particle states are eigenstates of the charge conjuga-
tion operator C and what are their respective eigenvalues?

|γ〉; |π0〉; |π+〉; |π−〉; |π+〉 − |π−〉; |νe〉; |Σ0〉.
b) How do the following quantities behave under the parity operation? (Supply

a brief explanation.)
position vector r momentum p
angular momentum L spin σ
electric field E magnetic field B
electric dipole moment σ · E magnetic dipole moment σ · B
helicity σ · p transversal polarisation σ · (p1 × p2)

3. Parity and C-parity of the f2 -mesons
The f2(1270) -meson has spin 2 and decays, amongst other routes, into π+π−.
a) Use this decay to find the parity and C-parity of the f2.
b) Investigate whether the decays f2 → π0π0 and f2 → γγ are allowed.

4. Pion decay and the Golden Rule
Calculate the ratio of the partial decay widths

Γ (π+ → e+ν)

Γ (π+ → μ+ν)

and so verify the relevant claims in the text. From the Golden Rule it holds that
Γ (π → �ν) ∝ |Mπ�|2 (E0), where |Mπ�| is the transition matrix element and
(E0) = dn/dE0 is the density of states (� denotes the charged lepton). The
calculation may be approached as follows:
a) Derive formulae for the momenta and energies of the charged leptons �+ as

functions of m� and mπ and so find numerical values for 1 − v/c.
b) We have |Mπ�|2 ∝ 1 − v/c. Use this to express the ratio of the squares of

the matrix elements as a function of the particle masses involved and find its
numerical value.

c) Calculate the ratio of the densities of states e(E0)/μ(E0) as a function
of the masses of the particles involved. Exploit the fact that the density of
states in momentum space is dn/d|p| ∝ |p|2 (|p| = |p�+ | = |pν |) and that
E0 = E�+ + Eν . For which of the two decays is the “phase space” bigger?

d) Combine the results from b) and c) to obtain the ratio of the partial decay
widths as a function of the masses of the particles involved. Find its numerical
value and compare it with its experimental value of (1.230 ± 0.004) · 10−4.
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The idea that the weak interaction is mediated by very heavy exchange bosons
was generally accepted long before they were discovered. The structure of
the Fermi theory of β-decay implies that the interaction is point-like, which
in turn implies that the exchange bosons have to be very heavy particles.
Quantitatively, however, this was confirmed only when the W and the Z
bosons were detected experimentally [Ar83, Ba83a] and their properties could
be measured. The Z0 boson’s properties imply a mixing of the electromagnetic
and weak interactions. The electroweak unification theory due to Glashow,
Salam and Weinberg from the early seventies was thus confirmed. Today it
is the basis of the standard model of elementary particle physics.

11.1 Real W and Z Bosons

The production of a real W or Z boson requires that a lepton and antilepton
or a quark and antiquark interact. The centre of mass energy necessary for
this is

√
s = MW, Z c

2. This energy is most easily reached using colliding
particle beams.

In e+e− colliders, a centre of mass energy of
√
s = 2Ee = MZc

2 is neces-
sary for the production of Z0 particles via:

e+ + e− → Z0 .

This became technically possible in 1989, when the SLC (Stanford Linear
Collider) and the LEP became operational; now large numbers of Z0 bosons
can be produced. W bosons can also be produced in e+e− reactions, but only
in pairs:

e+ + e− → W+ + W− .

Hence, significantly higher energies are necessary for their production:
√
s >

2MWc
2.

In 1996 the beam energy at LEP was upgraded to 86 GeV. This made
a precise measurement of the W-mass of the decay products of the W+W−

pairs possible.
For many years the production of W± or Z0 bosons was only possible

with the help of quarks in proton beams via the reactions:
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u + u → Z0, d + u → W−,
d + d → Z0, u + d → W+.

For these reactions, however, it is insufficient to collide two proton beams
each with half the rest energy of the vector bosons. Rather, the quarks which
participate have to carry enough centre of mass energy

√
ŝ to produce the

bosons. In a fast moving system, quarks carry only a fraction xPp of the
proton momentum Pp (cf. Sect. 7.3). About half the total momentum is
carried by gluons; the rest is distributed among several quarks, with the
mean x for valence quarks and sea quarks given by:

〈xv〉 ≈ 0.12 〈xs〉 ≈ 0.04 . (11.1)

One can produce a Z0 boson in a head-on collision of two protons according
to:

u + u → Z0 .

But the proton beam energy Ep must be close to Ep ≈ 600 GeV in order to
satisfy:

MZc
2 =

√
ŝ ≈

√
〈xu〉〈xu〉 · s = 2 ·

√
0.12 · 0.04 · Ep . (11.2)

Proton-antiproton collisions are more favourable, since the momentum
distributions of the u- and d-valence quarks in antiprotons are equal to those
of the u- and d-valence quarks in protons. Consequently, only about half the
energy is necessary. Since a p and a p have opposite charges, it is also not
necessary to build two separate accelerator rings; both beams can in fact be
injected in opposite directions into the same ring. At the SPS (Super Proton
Synchrotron) at CERN, which was renamed Spp̄S (Super Proton Antiproton
Storage ring) for this, protons and antiprotons of up to 318 GeV were stored;
at the Tevatron (FNAL), 900 GeV beam energies are attained.

The bosons were detected for the first time in 1983 at CERN at the UA1
[Ar83] and UA2 [Ba83a, An87] experiments in the decays:

Z0 → e+ + e−, W+ → e+ + νe,
Z0 → μ+ + μ−, W+ → μ+ + νμ .

The Z0 boson has a very simple experimental signature. One observes a
high-energy e+e− or μ+μ− pair flying off in opposite directions. Figure 11.1
shows a so-called “lego diagram” of one of the first events. The figure shows
the transverse energy measured in the calorimeter cells plotted against the
polar and azimuthal angles of the leptons relative to the incoming proton
beam. The height of the “lego bars” measures the energy of the leptons. The
total energy of both leptons corresponds to the mass of the Z0.

The detection of the charged vector bosons is somewhat more compli-
cated, since only the charged lepton leaves a trail in the detector and the
neutrino is not seen. The presence of the neutrino may be inferred from the
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Fig. 11.1. “Lego diagram” of one of the first events of the reaction qq → Z0 →
e+e−, in which the Z0 boson was detected at CERN. The transverse energies of the
electron and positron detected in the calorimeter elements are plotted as a function
of the polar and azimuthal angles [Ba83b].

momentum balance. When the transverse momenta (the momentum com-
ponents perpendicular to the beam direction) of all the detected particles
are added together the sum is found to be different from zero. This missing
(transverse) momentum is ascribed to the neutrino.

Mass and width of the W boson. The distribution of the transverse
momenta of the charged leptons may also be used to find the mass of the
W±. Consider a W+ produced at rest and then decaying into an e+ and a νe,
as shown in Fig. 11.2a. The transverse momentum of the positron is roughly
given by:

pe
+

t ≈ MW · c
2

sin θ , (11.3)

where θ is the angle at which the positron is emitted with respect to the
beam axis. We now consider the dependence of the cross-section on pt or on
cos θ. We have:

dσ
dpt

=
dσ

d cos θ
· d cos θ

dpt
, (11.4)

from which follows:

dσ
dpt

=
dσ

d cos θ
· 2pt

MWc
· 1
√

(MWc/2)2 − p2t
. (11.5)

The cross-section should have a maximum at pt = MWc/2 (because of the
transformation of variables, also called a Jacobian peak) and should then
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Fig. 11.2. (a) Kinematics of the decay W+ → e+ + νe. The maximum possible
transverse momentum pt of the e+ is MWc/2. (b) Distribution of the “transverse
mass” mt = 2pt/c of e+ and e− in the reaction q1 +q2 → e± +“nothing”, from the
UA2 experiment at CERN [Al92b].

drop off rapidly, as shown by the solid line in Fig. 11.2b. Since the W is not
produced at rest and has a finite decay width the distribution is smeared out.
The most precise figures to date for the width and mass of the W are:

MW = 80.41 ± 0.10 GeV/c2 ,
ΓW = 2.06 ± 0.07 GeV. (11.6)

Mass and width of the Z boson. Since the cross-section for creating Z-
bosons in e+e− collisions is much larger than the cross-section for creating W
bosons, in either e+e− or pp collisions, the mass and width of the Z0 boson
have been much more precisely determined than their W boson counterparts.
Furthermore, the energies of the e+ and e− beams are known to an accuracy
of a few MeV, which means that the measurements are extremely good. The
experimental values of the Z0 parameters and width are [PD98]:

MZ = 91.187 ± 0.007 GeV/c2

ΓZ = 2.490 ± 0.007 GeV . (11.7)

Decays of the W boson. When we dealt with the charged current decays
of hadrons and leptons we saw that the W boson only couples to left-handed



11.1 Real W and Z Bosons 155

fermions (maximum parity violation) and that the coupling is always the
same (universality). Only the Cabibbo rotation causes a small correction in
the coupling to the quarks.

If this universality of the weak interaction holds, then all types of fermion–
antifermion pairs should be equally likely to be produced in the decay of real
W bosons. The colour charges mean that an extra factor of 3 is expected
for quark-antiquark production. The production of a t-quark is impossible
because of its larger mass. Thus, if we neglect the differences between the
fermion masses, a ratio of 1 : 1 : 1 : 3 : 3 is expected for the production of the
pairs e+νe, μ+νμ, τ+ντ , ud′, and cs′, in the decay of the W+ boson. Here, the
states d′ and s′ are the Cabibbo-rotated eigenstates of the weak interaction.

Because of the process of hadronisation, it is not always possible in an ex-
periment to unequivocally determine the type of quark–antiquark pair into
which a W boson decays. Leptonic decay channels can be identified much
more easily. According to the above estimate, a decay fraction of 1/9 is ex-
pected for each lepton pair. The experimental results are [PD98]:

W± → e±+
(−)
νe 10.9 ± 0.4%

μ±+
(−)
νμ 10.2 ± 0.5%

τ±+
(−)
ντ 11.3 ± 0.8%, (11.8)

in very good agreement with our prediction.

Decays of the Z boson. If the Z boson mediates the weak interaction in the
same way as the W boson does, it should also couple with the same strength
to all lepton-antilepton pairs and to all quark–antiquark pairs. One therefore
should expect a ratio of 1 : 1 : 1 : 1 : 1 : 1 : 3 : 3 : 3 : 3 : 3 for the six leptonic chan-
nels and the five hadronic channels which are energetically accessible; i. e.,
1/21 for each lepton–antilepton pair, and 1/7 for each quark–antiquark pair.

To determine the branching ratios, the various pairs of charged leptons
and hadronic decays must be distinguished with appropriate detectors. The
different quark–antiquark channels cannot always be separated. Decays into
neutrino–antineutrino pairs cannot be directly detected. In order to measure
their contribution, the cross-sections for all other decays are measured, and
compared to the total width of the Z0 boson. Treating the spin dependences
correctly [Na90], we rewrite the Breit-Wigner formula (9.8) in the form:

σi→f (s) = 12π(�c)2 · Γi · Γf

(s−M2
Zc

4)2 +M2
Zc

4Γ 2
tot

. (11.9)

Here, Γi is the partial width of the initial channel (the partial width for the
decay Z0 → e+e−) and Γf is the partial width of the final channel. The total
width of the Z0 is the sum of the partial widths of all the possible decays into
fermion–antifermion pairs:
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Γtot(Z0) =
∑

all fermions f

Γ (Z0 → ff) . (11.10)

Each final channel thus yields a resonance curve with a maximum at
√
s =

MZc
2, and a total width of Γtot. Its height is proportional to the partial width

Γf . The partial width Γf can experimentally be determined from the ratio of
the events of the corresponding channel to the total number of all Z0 events.

Analyses of the experiments at LEP and SLC yield the following branch-
ing ratios [PD98]:

Z0 −→ e+ + e− 3.366 ± 0.008%
μ+ + μ− 3.367 ± 0.013%
τ+ + τ− 3.360 ± 0.015%

νe,μ,τ + νe,μ,τ 20.01 ± 0.16 %
hadrons 69.90 ± 0.15 % . (11.11)

Thus, the probability for a decay into charged leptons is significantly different
from the decay probability into neutrinos. The coupling of the Z0 boson
apparently depends on the electric charge. Hence the Z0 cannot simply be a
“neutral W boson” coupling with the same strength to all fermions; rather
it mediates a more complicated interaction.

11.2 Electroweak Unification

The properties of the Z0 boson are attractively described in the theory of the
electroweak interaction. In this framework, developed by Salam and Wein-
berg, the electromagnetic and weak interactions are understood as two as-
pects of the same interaction.

Weak isospin. The electroweak interaction theory can be elegantly de-
scribed by introducing a new quantum number, the weak isospin T , in anal-
ogy to the isospin of the strong interaction. Each family of left-handed quarks
and leptons forms a doublet of fermions which can transform into each other
by emitting (or absorbing) a W boson. The electric charges zf · e of the two
fermions in a doublet always differ by one unit. The weak isospin ascribed to
them is T = 1/2, and the third component is T3 = ±1/2. For right-handed
antifermions, the signs of T3 and zf are inverted. By contrast, right-handed
fermions (and left-handed antifermions) do not couple to W bosons. They
are described as singlets (T = T3 = 0). Hence, the left-handed leptons and
the (Cabibbo-rotated) left-handed quarks of each family form two doublets
and there are additionally three right-handed fermion singlets.
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Table 11.1. Multiplets of the electroweak interaction. The quarks d′, s′ and
b′ emerge from the mass eigenstates through a generalised Cabibbo rotation
(Kobayashi-Maskawa matrix). Weak isospin T doublets are joined in parentheses.
The electric charges of the two states of each doublet always differ by one unit.
The sign of the third component T3 is defined so that that the difference zf − T3 is
constant within each doublet.

Fermion Multiplets T T3 zf

(
νe

e

)

L

(
νμ

μ

)

L

(
ντ

τ

)

L

1/2
+1/2
−1/2

0
−1

L
ep

to
n
s

eR μR τR 0 0 −1

(
u
d′

)

L

(
c
s′

)

L

(
t
b′

)

L

1/2
+1/2
−1/2

+2/3
−1/3

uR cR tR 0 0 +2/3Q
u
a
rk

s

dR sR bR 0 0 −1/3

The Weinberg angle. We now continue our description of the weak isospin
formalism. One requires conservation of T3 in reactions with charged currents.
The W− boson must then be assigned the quantum number T3(W−) = −1
and the W+ boson T3(W+) = +1. A third state should therefore exist with
T = 1, T3 = 0, coupling with the same strength g as the W± to the fermion
doublets. This state is denoted by W0; and together with the W+ and the
W− it forms a weak isospin triplet.

The W0 cannot be identical to the Z0, since we saw that the coupling of the
latter also depends on the electric charge. One now postulates the existence
of an additional state B0, a singlet of the weak isospin (T = 0, T3 = 0). Its
coupling strength does not have to be equal to that of the triplet (W±,W0).
The corresponding weak charge is denoted by g′. The B0 and W0 couple to
fermions without changing their weak isospin and hence without changing
their type.

Experimentally two neutral vector bosons, the photon and the Z0, are
indeed known. The basic idea of the electroweak unification is to describe
the photon and the Z0 as mutually orthogonal, linear combinations of the B0

and the W0. This mixing is, analogously to the description of quark mixing
in terms of the Cabibbo angle (10.18), expressed as a rotation through the
so-called electroweak mixing angle θW (also called the Weinberg angle):

|γ〉 = cos θW|B0〉 + sin θW|W0〉

|Z0〉 = − sin θW|B0〉 + cos θW|W0〉 . (11.12)
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The connection between the Weinberg angle θW, the weak charges g and g′

and the electric charge e is given by demanding that the photon couples to
the charges of the left and right handed fermions but not to the neutrinos.
One so obtains [Na90]

tan θW =
g′

g
, sin θW =

g′
√
g2 + g′2

, cos θW =
g

√
g2 + g′2

. (11.13)

The electromagnetic charge is given by:

e = g · sin θW. (11.14)

The Weinberg angle can be determined, for example, from ν–e scattering,
from electroweak interference in e+e− scattering, out of the width of the
Z0, or from the ratio of the masses of the W± and the Z0 [Am87, Co88]. A
combined analysis of such experiments gives the following result [PD98]:

sin2 θW = 0.231 24 ± 0.000 24 . (11.15)

Hence, the weak coupling constant (αw ∝ g · g) is about four times stronger
than the electromagnetic one (α ∝ e · e). It is the propagator term in the
matrix element (10.3), which is responsible for the tiny effective strength of
the weak interaction at low energies.

This Weinberg mixing somewhat complicates the interaction. The W bo-
son couples with equal strength to all the quarks and leptons (universal-
ity) but always to only left-handed particles and right-handed antiparticles
(maximal parity violation). In the coupling of the Z boson, however, the elec-
tric charges of the fundamental fermions play a part as well. The coupling
strength of the Z0 to a fermion f is:

gZ(f) =
g

cos θW
· ĝ(f) where ĝ(f) = T3 − zf sin2 θW , (11.16)

and zf is the electric charge of the fermion in units of the elementary charge e.

The ratio of the masses of the W and Z bosons. The electroweak
unification theory could be used to predict the absolute masses of the W
and the Z fairly well before their actual discovery. According to (10.4) and
(11.14), the electromagnetic coupling constant α, the Fermi constant GF and
the mass of the W boson are related by

M2
Wc

4 =
4πα

8 sin2 θW
·
√

2 (�c)3

GF
. (11.17)

It is important to realise that in in quantum field theory the “constants” α
and sin2 θW are in fact weakly dependent upon the energy range (renormal-
isation) [El82, Fa90]. For the mass region of 11.17, we have α ≈ 1/128 and
sin2 θW ≈ 0.231. The mass of the Z boson is fixed by the relation:
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MW

MZ
= cos θW ≈ 0.88 . (11.18)

This is in good agreement with the ratio calculated from the experimentally
measured masses (11.6) and (11.7):

MW

MZ
= 0.8818 ± 0.0011 . (11.19)

The resulting value of sin2 θW is in very good agreement with the results of
other experiments. The value given in (11.15) is from the combined analysis
of all experiments.

Interpretation of the width of the Z0. A detailed study of the production
of Z0 bosons in electron–positron annihilation delivers a very precise check
of the predictions of the standard model of electroweak unification.

The coupling of a Z0 to a fermion f is proportional to the quantity ĝ(f)
defined in (11.16). The partial width Γ for a decay Z0 → ff is a superposition
of two parts, one for each helicity state:

Γf = Γ0 ·
[
ĝ2L(f) + ĝ2R(f)

]
, (11.20)

where
Γ0 =

GF

3π
√

2 (�c)3
·M3

Zc
6 ≈ 663 MeV. (11.21)

For left-handed neutrinos, T3 = 1/2 , zf = 0; hence,

ĝL(ν) =
1
2
. (11.22)

We believe that right-handed neutrinos are not found in nature. They would
have T3 = zf = ĝR = 0 and would not be subject to the interactions of
the standard model. The contribution of each νν pair to the total width is
therefore:

Γν ≈ 165.8 MeV. (11.23)

The d, s and b quarks have T3 = −1/2 (left-handed) or T3 = 0 (right-handed)
and zf = −1/3. This yields:

ĝL(d) = −1
2

+
1
3

sin2 θW, ĝR(d) =
1
3

sin2 θW. (11.24)

Recalling that quark–antiquark pairs can be produced in three colour com-
binations (rr̄, gḡ, bb̄), the total contribution of these quarks is:

Γd = Γs = Γb = 3 · 122.4 MeV. (11.25)

Similarly the contribution of the u and c quarks is:
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Γu = Γc = 3 · 94.9 MeV , (11.26)

and the contribution of the charged leptons is:

Γe = Γμ = Γτ = 83.3 MeV . (11.27)

Decays into νν pairs cannot be directly detected in an experiment, but they
manifest themselves in their contributions to the total width. Taking account
of the finite masses of the quarks and charged leptons only produces small
corrections, as these masses are small compared to the mass of the Z boson.

Including all known quarks and leptons in the calculations, one finds that
the total width is 2418 MeV. After incorporating quantum field theoretical
corrections due to higher-order processes (radiation corrections) the width
predicted is [La95]:

Γ theor.
tot = (2497±6) MeV . (11.28)

This is in very good agreement with the experimental value (11.7) of:

Γ exp.
tot = (2490 ± 7) MeV . (11.29)

The proportion of the total number of decays into pairs of charged leptons
is equal to the ratio of the widths (11.27) and (11.28):

Γe,μ,τ

Γtot
= 3.37% . (11.30)

The experimental branching ratios (11.11) are in excellent agreement with
this theoretical value.

If a fourth type of light neutrino were to couple to the Z0 in the same
way, then the total width would be larger by 166 MeV. We thus can deduce
from the experimental result that exactly three types of light neutrinos exist
(Fig. 11.3). This may be interpreted as implying that the total number of
generations of quarks and leptons is three (and three only).

Symmetry breaking. Notwithstanding the successes of electroweak uni-
fication, the theory is aesthetically flawed: the mixture of states described
by the Weinberg rotation (11.12) should only occur for states with similar
energies (masses). Yet, the photon is massless and the W and Z bosons have
very large masses. How this can happen is a central and, as yet, not really
answered question in particle physics.

A possible answer is associated with spontaneous symmetry breaking, a
concept known from the physics of phase transitions. This assumes an asym-
metric vacuum ground state. The best-known examples of this idea are the
magnetic properties of iron, and the Meissner effect (or Meissner-Ochsenfeld
effect) in superconductivity.
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Fig. 11.3. Cross-section of the reaction e+e−→hadrons close to the Z0 resonance.
The data shown are the results of the OPAL experiment at CERN [Bu91]. Accord-
ing to (11.9) the measured width of the resonance yields the total cross-section.
The more types of light leptons exist, the smaller the fraction of the total cross-
section that remains for the production of hadrons. The lines show the theoretical
predictions, based on the measured width of the resonance, assuming that 2, 3, or
4 massless neutrinos exist.

To illustrate how symmetry breaking can generate a mass, we now consider
the analogy of ferromagnetism. Above the Curie temperature, iron is paramagnetic
and the spins of the valence electrons are isotropically distributed. No force is
required to alter spin orientations. The fields that carry the magnetic interaction
may, as far as spatial rotations are concerned, be considered massless. When the
temperature drops below the Curie point, a phase transition takes place and iron
becomes ferromagnetic. The spins, or the magnetic moments of the valence electrons
turn spontaneously to point in a common direction which is not fixed a priori. The
space within the ferromagnet is no longer isotropic, rather it has a definite preferred
direction. Force must be used to turn the spins away from the preferred direction.
Thus the carriers of the magnetic interaction now have a mass as far as rotations
are concerned. This process is called spontaneous symmetry breaking.

The Meissner effect, the absence of external magnetic fields in superconduc-
tors, provides an even better analogy to particle production by symmetry breaking.
Above the transition temperature of the superconductor, magnetic fields propagate
freely within the conductor. With the transition to the superconducting phase,
however, they are expelled from the superconductor. They can only penetrate the
superconductor at its surface and drop off exponentially inside. An observer within
the superconductor could explain this effect by a finite range of the magnetic field
in the superconductor. In analogy to the discussion of the Yukawa force (Sect. 16.3)
he therefore would ascribe a finite mass to the photon.

Where is the spontaneous symmetry breaking in this process? This is what ac-
tually happens in superconductivity: below the critical temperature, Cooper pairs
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are formed out of the conduction electrons which organise themselves into a cor-
related state of definite energy; the energy of the superconducting ground state.
For an observer within the superconductor, the ground state of the superconductor
is the ground state of the vacuum. As the temperature sinks a current is induced
in the superconductor which compensates the external magnetic field and expels
it from the superconductor. The correlated Cooper pairs are responsible for this
current. Just as in the case of the ferromagnet where the spins are no longer free
to choose their orientation, the phase of a Cooper pair is here fixed by the phase
of the other Cooper pairs. This effect corresponds to a symmetry breaking of the
ground state.

In a theoretical model, proposed independently by Englert and Brout [En64]
and by Higgs [Hi64], the masses of the Z0 and of the W± bosons are explained
in analogy to the Meissner effect. In this model, so-called Higgs fields are pos-
tulated, which — compared to our example — correspond to the ground state
of correlated Cooper pairs in superconductivity. At sufficiently high temper-
atures (or energies) the Z0 and W± bosons are massless like the photon.
Below the energy of the phase transition, the boson masses are produced by
the Higgs fields, just as the “photon mass” is in the Meissner effect.

The masses of the Z0 and the W± bosons must be independent of their
location and orientation in the universe. Hence, the Higgs fields must be
scalars. In the theory of electroweak unification, there are thus four Higgs
fields, one for each boson. During the cooling of the system, three Higgs
bosons, the quanta of the Higgs field, are absorbed by the Z0 and by the W±.
This generates their masses. Since the photon remains massless there must
still be a free Higgs boson.

The existence of these Higgs fields is fundamental to the modern inter-
pretation of elementary particle physics. The search for non-absorbed Higgs
bosons is the main motivation for the construction of a new accelerator and
storage ring at CERN, the Large Hadron Collider (LHC). The experimental
proof of their existence would be a complete confirmation of the Glashow-
Salam-Weinberg theory of electroweak unification. The non-existence of the
Higgs bosons, however, would require completely new theoretical concepts.
One could compare this situation with that at the end of the nineteenth
century, when the existence of the aether had a similar importance for the
interpretation of physics.
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Problem
1. Number of neutrino generations

At the LEP storage ring at CERN Z0-bosons are produced in electron-positron
annihilations at a centre of mass energy of about 91 GeV before decaying into
fermions: e+e− → Z0 → ff. Use the following measurements from the OPAL
experiment to verify the statement that there are exactly three sorts of light
neutrinos (with mν < mZ0/2). The measurement of the resonance curve (11.9)
yielded: σmax

had = 41.45± 0.31 nb, Γhad = 1738± 12MeV, Γ� = 83.27± 0.50 MeV,
MZ = 91.182 ± 0.009 GeV/c2. All quark final states are here combined into a
single width Γhad and Γ� is the decay width of the Z0 into (single) charged
leptons. Derive a formula for the number of neutrino species Nν and use the
ratio Γ�/Γν from the text to calculate Nν . Estimate the error in Nν from the
experimental errors.
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Se non è vero, è ben trovato.

Giordano Bruno
Gli eroici furori

Die Wissenschaft hat ewig Grenzen,
aber keine ewigen Grenzen.

P. du Bois-Reymond
Über die Grenzen

des Naturerkennens

The standard model of elementary particle physics comprises the unified
theory of the electroweak interaction and quantum chromodynamics. In the
following, we will once more summarise what we have learned in previous
chapters about the different particles and interactions.

– As well as gravitation, we know of three elementary interactions which
have very similar structures. Each of them is mediated by the exchange of
vector bosons.

Exchange Mass
Interaction couples to

particle(s) (GeV/c2)
JP

strong colour charge 8 gluons (g) 0 1−

electromagn. electric charge photon (γ) 0 1−

weak weak charge W±, Z0 ≈ 102 1

Gluons carry colour and therefore interact with each other. The bosons of
the weak interaction themselves carry weak charge and couple with each
other as well.

– As well as the exchange bosons, the known fundamental particles are the
quarks and the leptons. They are fermions with spin-1/2. They are grouped,
according to their masses, into three “families”, or “generations”.

Family Electr. Weak Isospin
Fermions

1 2 3 charge
Colour

left-hd. right-hd.
Spin

νe νμ ντ 0 —
Leptons

e μ τ −1
— 1/2

0
1/2

u c t +2/3 0
Quarks

d s b −1/3
r, b, g 1/2

0
1/2
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Each fermion has an associated antifermion. It has the same mass as the
fermion, but opposite electric charge, colour and third component of weak
isospin.
From the measured width of the Z0 resonance, one can deduce that no
further (fourth) massless neutrino exists. Thus, the existence of a fourth
generation of fermions (at least one with a light neutrino) can be excluded.

– The range of the electromagnetic interaction is infinite since photons are
massless. Because of the large mass of the exchange bosons of the weak
interaction, its range is limited to 10−3 fm. Gluons have zero rest mass.
Yet, the effective range of the strong interaction is limited by the mutual
interaction of the gluons. The energy of the colour field increases with in-
creasing distance. At distances >∼ 1 fm, it is sufficiently large to produce real
quark–antiquark pairs. “Free” particles always have to be colour neutral.

– The electromagnetic interaction and the weak interaction can be inter-
preted as two aspects of a single interaction: the electroweak interaction.
The corresponding charges are related by the Weinberg angle, cf. (11.14).

– Different conservation laws apply to the different interactions:
• The following physical quantities are conserved in all three interactions:

energy (E), momentum (p ), angular momentum (L), charge (Q), colour,
baryon number (B) and the lepton number L.

• The P and C parities are conserved in the strong and in the electromag-
netic interaction; but not in the weak interaction. For the charged current
of the weak interaction, parity violation is maximal. The charged cur-
rent only couples to left-handed fermions and right-handed antifermions.
The neutral weak current is partly parity violating. It couples to left-
handed and right-handed fermions and antifermions, but with different
strengths. One case is known in which the combined CP parity is not
conserved.

• Only the charged current of the weak interaction transforms one type of
quark into another type (quarks of a different flavour) and one type of
lepton into another. Thus, the quantum numbers determining the quark
flavour (third component of isospin (I3), strangeness (S), charm (C) etc.)
are conserved in all other interactions.

• The magnitude of the isospin (I) is conserved in strong interactions.

The allowed transitions within lepton families are shown in Fig. 12.1. The
transitions are shown between the leptonic weak interaction eigenstates and
also between leptonic mass operator eigenstates. The corresponding quark
family transitions are shown in Fig. 12.2. Here the transitions between the
quark eigenstates of the weak interaction are shown, as are those between
quark flavours. These pictures are perhaps the forerunner of a new type of
spectroscopy, more elementary than the atomic, nuclear or hadronic spec-
troscopies. In summary, experiments are in astoundingly good quantitative
agreement with the assumptions of the standard model. These include the
grouping of the fermions into left-handed doublets and right-handed singlets
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Fig. 12.1. Transitions between lepton states via charged currents. On the left for
leptonic weak interaction eigenstates, on the right for mass operator eigenstates.
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Fig. 12.2. Transitions between quark states via charged currents. On the left quark
weak interaction eigenstates, on the right, mass operator eigenstates. The strength
of the coupling is reflected in the width of the arrows. The mass of the t quark is
so large, that it decays by emission of a real W+ boson.

of weak isospin, the strength of the coupling of the Z0 to left-handed and
right-handed fermions, the three-fold nature of the quark families because
of colour and the ratio of the masses of the W± and Z0. We thus possess
a self-contained picture of the fundamental building blocks of matter and
of their interactions. And yet today’s standard model is unsatisfactory in
many respects. A large number of free parameters remain, as many as 21
or more, depending on the counting scheme [Na90]. These are the masses
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of the fermions and bosons, the coupling constants of the interactions, the
coefficients of the Kobayashi-Maskawa matrix and of the Pontecorvo-Maki-
Nakagava-Sakata matrix. These parameters are not given by the standard
model; they must be determined experimentally and have then to be incor-
porated ad hoc into the model.

Many questions are still completely open. Why do exactly three families
of fermions exist? What is the origin of the masses of all the other fermions
and of the W and Z boson? Does the Higgs boson exist? Is it a coincidence
that that within every family the fermions which carry more charge (strong,
electromagnetic, weak) have larger masses? Are baryon number and lepton
number strictly conserved? What is the origin of CP violation? What is the
origin of the mixture of lepton families, described by the Pontecorvo-Maki-
Nakagava-Sakata matrix? What is the origin of the mixture of quark families,
described by the Cabibbo-Kobayashi-Maskawa matrix? Why are there just
four interactions? What determines the magnitudes of the coupling constants
of the different interactions? Is it possible to unify the strong and electroweak
interactions, as one has unified the electromagnetic and weak interactions?
Will it be possible to include gravitation in a complete unification?

Such questions reflect the experience physicists have gained in analysing
the building blocks of matter. On their journey from solid bodies to quarks
via molecules, atoms, nuclei, and hadrons, they have constantly found new,
fundamental particles. The question “Why?” implicitly assumes that more
fundamental reasons exist for observed phenomena — new experiments are
the only way to check this assumption.

Nature has always looked like a horrible mess, but as we go
along we see patterns and put theories together; a certain
clarity comes and things get simpler.

Richard P. Feynman [Fe85]
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Naturam expelles furca, tamen usque recurret.
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Analogy is perhaps the physicist’s most powerful concep-
tual tool for understanding new phenomena or opening
new areas of investigation. Early in this century, for ex-
ample, Ernest Rutherford and Niels Bohr conceived the
atom as a miniature solar system in which electrons circle
the nucleus as planets circle the sun.

V. L. Telegdi [Te62]

In the following we are going to consider hadronic bound-states. The simplest
example are heavy quark-antiquark (cc and bb) pairs, which are known as
quarkonia . Due to the large quark masses they may be approximately treated
in a nonrelativistic manner. The hydrogen atom and positronium will serve
as electromagnetic analogues.

13.1 The Hydrogen Atom and Positronium Analogues

The simplest atomic bound-state is the hydrogen atom, which is composed
of a proton and an electron. To a first approximation the bound-states and
energy levels may be calculated from the nonrelativistic Schrödinger equa-
tion. The static Coulomb potential VC ∝ 1/r is then incorporated into the
Hamiltonian (

− �
2

2m
�− α�c

r

)
ψ(r) = E ψ(r). (13.1)

The eigenstates are characterised by the number of nodes N in the radial
wave functions and the orbital angular momentum �. For the particular case
of the Coulomb potential, states with identical n = N + �+ 1 are degenerate
and n is therefore called the principal quantum number. The allowed energy
levels En are found to be

En = −α
2mc2

2n2
, (13.2)

where α is the electromagnetic coupling constant and m is the reduced mass
of the system:

m =
Mpme

Mp +me
≈ me = 0.511 MeV/c2 . (13.3)

The binding energy of the hydrogen ground state (n = 1) is E1 = −13.6 eV.
The Bohr radius rb is given by

rb =
� · c
α ·mc2 ≈ 197MeV · fm

137−1 · 0.511MeV
= 0.53 · 105 fm . (13.4)
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The spin-orbit interaction (“fine structure”) and the spin-spin-interaction
(“hyperfine structure”) split the degeneracy of the principal energy levels as
is shown in Fig. 13.1. These corrections to the general 1/n2 behaviour of
the energy levels are, however, very small. The fine structure correction is of
order α2 while that of the hyperfine structure is of order α2 ·μp/μe. The ratio
of the hyperfine splitting of the 1s1/2 level to the gap between the n = 1 and
n = 2 principal energy levels is therefore merely EHFS/En ≈ 5 · 10−7. Here
we employ the notation n�j for states when fine structure effects are taken
into account. The orbital angular momenta quantum numbers � = 0, 1, 2, 3
are then denoted by the letters s,p,d, f. The quantum number j is the total
angular momentum of the electron, j = � + s. A fourth quantum number f
is used to describe the hyperfine effects (see Fig. 13.1 left). This describes
the total angular momentum of the atom, f = j + i, with the proton’s spin
i included.

The energy states of positronium, the bound e+e− system, can be found
in an analogous way to the above. The main differences are that the reduced
mass (m = me/2) is only half the value of the hydrogen case and the spin-spin
coupling is much larger than before, since the electron magnetic moment is
roughly 650 times larger than that of the proton. The smaller reduced mass
means that the binding energies of the bound states are only half the size of
those of the hydrogen atom while the Bohr radius is twice its previous value
(Fig. 13.2). The stronger spin-spin coupling now means that the positronium
spectrum does not display the clear hierarchy of fine and hyperfine structure
effects that we know from the hydrogen atom. The spin-orbit and spin-spin
forces are of a similar size (Fig. 13.1).
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Fig. 13.1. The energy levels of the hydrogen atom and of positronium. The ground
states (n=1) and the first excited states (n=2) are shown together with their fine
and hyperfine splitting. The splitting is not shown to scale.
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P e− e+ e−
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     hc
α . mec2

   2hc
α . mec2

Fig. 13.2. The first Bohr orbits of the hydrogen atom (a) and positronium (b)
(from [Na90]). The Bohr radius describes the average separation of the two bound
particles.

Thus for positronium the total spin S and the total angular momentum J
as well as the principal quantum number n and the orbital angular momentum
L are the useful quantum numbers. S can take on the values 0 (singlet)
and 1 (triplet), and J obeys the triangle inequality, |L − S| ≤ J ≤ L + S.
The notation n2S+1LJ is commonly employed, where the orbital angular
momentum L is represented by the capital letters (S, P, D, F). Thus 23P1

signifies a positronium state with n = 2 and S = L = J = 1.
Since electrons and positrons annihilate, positronium has a finite lifetime.

It primarily decays into 2 or 3 photons, depending upon whether the total
spin is 0 or 1. The decay width for the two-photon decay of the 11S0 state is
found to be [Na90]

Γ (11S0 → 2γ) =
4πα2

�
3

m2
ec

|ψ(0)|2 . (13.5)

Note that |ψ(0)|2 is the square of the wave function at the origin, i. e. the
probability that e+ and e− meet at a point. Equation (13.5) yields a lifetime
of ≈ 10−10 s.

The potential and the coupling constant of the electromagnetic interaction
are very well known, and electromagnetic transitions in positronium as well as
its lifetime can be calculated to high precision and excellent agreement with
experiment is found. Quarkonia, i.e., systems built up of strongly interacting
heavy quark-antiquark pairs, can be investigated in an analogous manner.
The effective potential and the coupling strength of the strong interaction can
thus be determined from the experimental spectrum and transition strengths
between the various states.



174 13 Quarkonia

13.2 Charmonium

Bound states of c and c quarks are, in analogy to positronium, called
charmonium. For historical reasons a somewhat different nomenclature is
employed for charmonium states than is used for positronium. The first
number is nqq = N +1, where N is the number of nodes in

e+

γ

e−

c c
the radial wave function, while for positronium the atomic
convention, according to which the principal quantum num-
ber is defined as natom = N + �+ 1, is used.
cc pairs are most easily produced in the decay of virtual
photons generated in e+e− collisions with a centre of mass
energy of around 3–4.5 GeV

e+ + e− → γ → cc .

Various resonances may be detected by varying the beam
energy and looking for peaks in the cross section. These are then ascribed to
the various charmonium states (Fig. 13.3). Because of the intermediate virtual

3.088       3.096      3.104      3.676        3.684        3.692

√⎯s  [GeV]

10000

1000

100

10

σ
 [n

b]

e+e−       Hadrons

Fig. 13.3. The cross section of the reaction e+e− → hadrons, plotted against the
centre of mass energy in two different intervals each of 25MeV. The two peaks which
are both 100 times larger than the continuum represent the lowest charmonium
states with JP = 1− (the J/ψ (13S1) and the ψ (23S1)). That the experimental
width of these resonances is a few MeV is a consequence of the detector’s resolution:
widths of 87 keV and 277 keV respectively may be extracted from the lifetimes of
the resonances. The results shown are early data from the e+e− ring SPEAR at
Stanford [Fe75].
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Beam tube

Sodium
Iodide
Crystals

Photomultipliers

Electrons

Ionisationdetectors
Positrons

Fig. 13.4. A (crystal ball) detector built out of spherically arranged NaI crys-
tals. High energy photons from electromagnetic cc transitions are absorbed by the
crystals. This creates a shower of electron-positron pairs which generate many low
energy, visible photons. These are then detected by photomultipliers attached to the
rear of the crystals. The current measured from the photomultipliers is proportional
to the energy of the initial photon (from [Kö86]).

photon, only cc states with the quantum numbers of a photon, (JP =1−), can
be created in this way. The lowest state with such quantum numbers is the
13S1, which is called the J/ψ (see p. 122) and has a mass of 3.097 GeV/c2.
Higher resonances with masses up to 4.4 GeV/c2 have been detected.

Charmonium states only have a finite lifetime. They predominantly decay
via the strong interaction into hadrons. Excited states can, however, by the
emission of a photon, decay into lower energy states, just as in atomic physics
or for positronium. The emitted photons may be measured with a detector
that covers the entire solid angle around the e+e− interaction zone (4π detec-
tors). Crystal balls, which are composed of spherically arranged scintillators
(NaI crystals) are particularly well suited to this task (Fig. 13.4).

If one generates, say, the excited charmonium ψ (23S1) state one then
may measure the photon spectrum shown in Fig. 13.5, in which various sharp
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Fig. 13.5. The photon spectrum in the decay of ψ (23S1), as measured in a crystal
ball, and a sketch of the so extracted charmonium energy levels. The strong peaks
in the photon spectrum represent the so numbered transitions in the sketch. The
continuous lines in the sketch represent parity changing electric dipole transitions
and the dashed lines denote magnetic dipole transitions which do not change parity
[Kö86].

lines are clearly visible. The photon energy is between 100 and 700 MeV. The
stronger lines are electric dipole transitions which obey the selection rules,
ΔL = 1 and ΔS = 0. Intermediate states with total angular momentum 0, 1
or 2 and positive parity must therefore be created in such decays. The parity
of the spatial wave function is just (−1)L, where L is the orbital angular mo-
mentum. Furthermore from the Dirac theory fermions and antifermions have
opposite intrinsic parity. Thus the parity of qq states is generally (−1)L+1.
Armed with this information we can reconstruct the diagram in Fig. 13.5. We
see that after the ψ (23S1) state is generated it primarily decays into the 13PJ

charmonium triplet system which is known as χc. These χc states then decay
into J/ψ’s. The spin 0 charmonium states (n1S0), which are called ηc, and
cannot be produced in e+e− collisions, are only produced in magnetic dipole
transitions from J/ψ or ψ (23S1). These obey the selection rules ΔL = 0 and
ΔS = 1 and thus connect states with the same parity. They correspond to a



13.3 Quark–Antiquark Potential 177

spin flip of one of the c-quarks. Magnetic dipole transitions are weaker than
electric dipole transitions. They are, however, observed in charmonium, since
the spin-spin interaction for cc states is significantly stronger than in atomic
systems. This is due to the much smaller separation between the partners
compared to atomic systems.

13.3 Quark–Antiquark Potential

If we compare the spectra of charmonium and positronium, we find that the
states with n= 1 and n= 2 are very similarly arranged once an overall in-
crease in the positronium scale of about 108 is taken into account (Fig. 13.6).
The higher charmonium states do not, on the other hand, display the 1/n2

behaviour we see in positronium.
What can we learn from this about the potential and the coupling con-

stant of the strong interaction? Since the potential determines the relative
positions of the energy levels, it is clear that the potential of the strong in-
teraction must, similarly to the electromagnetic one, be of a Coulomb type

 Mass [GeV/c 2 ] Binding energy  [eV]
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Fig. 13.6. Comparison of the energy levels of positronium and charmonium. The
energy scales were chosen such that the 1S and 2S states of the two systems coincide
horizontally. As a result of the differences in nomenclature for the first quantum
number, the 2P states in positronium actually correspond to the 1P levels in char-
monium. The splitting of the positronium states has been magnified. Dashed states
have been calculated but not yet experimentally detected. Note that the n=1 and
n=2 level patterns are very similar, while the 2S–3S separations are distinctly dif-
ferent. The dashed, horizontal line marks the threshold where positronium breaks
up and charmonium decays into two D mesons (see Sect. 13.6).
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(at least at very short distances, i.e., for n = 1, 2). This observation is sup-
ported by quantum chromodynamics which describes the force between the
quarks via gluon exchange and predicts a r−1 potential at short distances.
The absence, in comparison to positronium, of any degeneracy between the
23S and 13P states suggests that the potential is not of a pure Coulomb form
even at fairly small quark-antiquark separations. Since quarks have not been
experimentally observed, it is plausible to postulate a potential which is of a
Coulomb type at short distances and grows linearly at greater separations,
thus leading to the confinement of quarks in hadrons.

An ansatz for the potential is therefore

V = −4
3
αs(r)�c
r

+ k · r , (13.6)

which displays the asymptotic behaviour V (r→ 0) ∝ 1/r and V (r→∞) →
∞. The factor of 4/3 is a theoretical consequence of quarks coming in three
different colours. The strong coupling constant αs is actually not a constant
at all, but depends upon the separation r of the quarks (8.6), becoming
smaller as the separation increases. This is a direct consequence of QCD and
results in the so-called asymptotic freedom property of the strong force. This
behaviour allows us to view quarks as quasi-free particles at short distances
as we have already discussed for deep-inelastic scattering.

While a Coulomb potential corresponds to a dipole field, where the field
lines are spread out in space (Fig. 13.7a), the kr term leads to a so-called
flux tube. The lines of force between the quarks are “stretched” (Fig. 13.7b)
and the field energy increases linearly with the separation of the quarks. The
constant k in the second term of the potential determines the field energy
per unit length and is called the “string tension”.

The charmonium energy levels depend not only upon the potential but
also upon the kinetic terms in the Hamiltonian, which contain the a priori
unknown c-quark mass mc. The three unknown quantities αs, k and mc

may be roughly determined by fitting the principal energy levels of the cc
states from the nonrelativistic Schrödinger equation with the potential (13.6).

a) b)

Fig. 13.7. Field lines for (a) a dipole field (V ∝ 1/r) between two electric charges,
(b) a potential V ∝ r between two widely separated quarks.
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Fig. 13.8. Strong interaction potential ver-
sus the separation r of two quarks. This po-
tential is roughly described by (13.6). The
vertical lines mark the radii of the cc and
bb states as calculated from such a potential
(from [Go84]).

Typical results are: αs ≈ 0.15–0.25, k ≈ 1 GeV/fm and mc ≈ 1.5 GeV/c2.
Note that mc is the constituent mass of the c-quark. The strong coupling
constant in the charmonium system is about 20–30 times larger than the
electromagnetic coupling, α = 1/137. Figure 13.8 shows a potential, based
upon (13.6), where the calculated radii of the charmonium states are given.
The J/ψ (13S1) has, for example, a radius1 of approximately r ≈ 0.4 fm,
which is five orders of magnitude smaller than that of positronium.

To fully describe the energy levels of Fig. 13.6 one must incorporate fur-
ther terms into the potential. Similarly to the case of atomic physics, one can
describe the splitting of the P states very well through a spin-orbit interac-
tion. The splitting of the S states of charmonium and the related spin-spin
interaction will be treated in the next section.

The Coulomb potential describes forces that decrease with distance. The
integral of this force is the ionisation energy. The strong interaction potential,
(13.6), on the other hand, describes a force between quarks which remains
constant at large separations. To remove a coloured particle such as a quark
from a hadron would require an infinitely high energy. Thus, since the iso-
lation of coloured objects is impossible, we find only colourless objects in
nature. This does not, however, mean that quarks cannot be detached from
one another.

Quarks are not liberated in such circumstances, rather fresh hadrons are
produced if the energy in the flux tube crosses a specific threshold. The now
detached quarks become constituents of these new hadrons. If, for example,
a quark is knocked out of a hadron in deep inelastic scattering, the flux tube

1 By this we mean the average separation between the quark and the antiquark
(see Fig. 13.2).
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between this quark and the remainder of the original hadron breaks when
the tube reaches a length of about 1–2 fm. The field energy is converted into
a quark and an antiquark. These then separately attach themselves to the
two ends of the flux tube and thus produce two colour neutral hadrons. This
is the previously mentioned hadronisation process.

13.4 The Chromomagnetic Interaction

The similarity between the potential of the strong force and that of the
electromagnetic interaction is due to the short distance r−1 Coulombic term.
This part corresponds to 1-gluon (1-photon) exchange. Charmonium displays
a strong splitting of the S states, as does positronium, and this is due to a
spin-spin interaction. This force is only large at small distances and thus
1-gluon exchange should essentially account for it in quarkonium. The spin-
spin interaction splitting, and hence the force itself, is, however, roughly 1000
times larger for charmonium than in positronium.

The spin-spin interaction for positronium takes the form

Vss(e+e−) =
−2μ0

3
μ1 · μ2 δ(x) , (13.7)

where μ0 is the vacuum permeability. This equation describes the point in-
teraction of the magnetic moments μ1,2 of e+ and e−. The magnetic moment
of the electron (positron) is just

μi =
zie�

2mi
σi where zi = Qi/e = ±1 , (13.8)

and the components of the vector σ are the Pauli matrices; σ2
x =σ2

y =σ2
z =1l.

The potential Vss(e+e−) may then be expressed as

Vss(e+e−) =
−�

2 μ0

6
z1z2e

2

m1m2
σ1 · σ2 δ(x) =

2π�
3

3 c
α

σ1 · σ2

m2
e

δ(x) . (13.9)

The quark colour charges lead to a spin-spin interaction called the chro-
momagnetic or colour magnetic interaction. To generalise the electromagnetic
spin-spin force to describe the chromomagnetic spin-spin interaction we have
to replace the electromagnetic coupling constant α by αs and alter the fac-
tor to take the three colour charges into account. We thus obtain for the
quark-antiquark spin-spin interaction

Vss(qq) =
8π�

3

9 c
αs

σq · σq

mqmq
δ(x) . (13.10)

The chromomagnetic energy thus depends upon the relative spin orientations
of the quark and the antiquark. The expectation value of σq ·σq is found to
be
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σq · σq = 4sq · sq/�
2 = 2 · [S(S + 1) − sq(sq + 1) − sq(sq + 1)]

=
{
−3 for S = 0 ,
+1 for S = 1 , (13.11)

where S is the total spin of the charmonium state and we have used the
identity, S2 = (sq + sq)2. One thus obtains an energy splitting from this
chromomagnetic interaction of the form

ΔEss = 〈ψ|Vss|ψ〉 = 4 · 8π�
3

9 c
αs

mqmq
|ψ(0)|2 . (13.12)

This splitting is only important for S states, since only then is the wave
function at the origin ψ(0) non-vanishing.

The observed charmonium transition from the state 13S1 to 11S0

(i.e., J/ψ → ηc) is a magnetic transition, which corresponds to one of the
quarks flipping its spin. The measured photon energy, and hence the gap
between the states, is approximately 120 MeV. The colour magnetic force
(13.12) should account for this splitting. Although an exact calculation of
the wave function is not possible, we can use the values of αs and mc from
the last section to see that our ansatz for the chromomagnetic interaction is
consistent with the observed splitting of the states. We will see in Chap. 14
that the spin-spin force also plays a role for light mesons and indeed describes
their mass spectrum very well.

The c-quark’s mass. The c-quark mass which we obtained from our study
of the charmonium spectrum is its constituent quark mass, i.e., the effective
quark mass in the bound state. This constituent mass has two parts: the
intrinsic (or “bare”) quark mass and a “dynamical” part which comes from
the cloud of sea quarks and gluons that surrounds the quark. The fact that
charmed hadrons are 4–10 times heavier than light hadrons implies that the
constituent mass of the c-quark is predominantly intrinsic since the dynamical
masses themselves should be more or less similar for all hadrons. We should
not forget that even if the dynamical masses are small compared to the heavy
quark constituent mass, the potential we have used is a phenomenological one
which merely describes the interaction between constituent quarks.

13.5 Bottonium and Toponium

A further group of narrow resonances are found in e+e− scattering at centre
of mass energies of around 10 GeV. These are understood as bb bound states
and are called bottonium. The lowest bb state which can be obtained from
e+e− annihilation is called the Υ and has a mass of 9.46 GeV/c2. Higher bb
excitations have been found with masses up to 11 GeV/c2.
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Fig. 13.9. Energy levels of charmonium and bottonium. Dashed levels are theoret-
ically predicted, but not yet experimentally observed. The spectra display a very
similar structure. The dashed line shows the threshold beyond which charmonium
(bottonium) decays into hadrons containing the initial quarks, i.e., D (B) mesons.
Below the threshold electromagnetic transitions from 3S states into 3P and 1S states
are observed. For bottonium the first and second excitations (n = 2, 3) lie below
this threshold, for charmonium only the first does.

Various electromagnetic transitions between the various bottonium states
are also observed. As well as a 13PJ state, a 23PJ state has been observed.
The spectrum of these states closely parallels that of charmonium (Fig. 13.9).
This indicates that the quark-antiquark potential is independent of quark
flavour. The b-quark mass is about 3 times as large as that of the c-quark.
The radius of the quarkonium ground state is from (13.4) inversely propor-
tional both to the quark mass and to the strong coupling constant αs. The
1S bb state thus has a radius of roughly 0.2 fm (cf. Fig. 13.8), i.e., about half
that of the equivalent cc state. Furthermore the nonrelativistic treatment of
bottonium is better justified than was the case for charmonium. The approx-
imately equal mass difference between the 1S and 2S states in both systems
is, however, astounding. A purely Coulombic potential would cause the levels
to be proportional to the reduced mass of the system, (13.2). It is thus clear
that the long distance part of the potential kr cancels the mass dependence
of the energy levels at the c- and b-quark mass scales.

The t-quark has, due to its large mass, only a fleeting lifetime. Thus no
pronounced tt states (toponium) are expected.
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13.6 The Decay Channels of Heavy Quarkonia

Up to now we have essentially dealt with the electromagnetic transitions
between various levels of quarkonia. But actually it is astonishing that elec-
tromagnetic decays occur at all at an observable rate. One would naively ex-
pect a strongly interacting object to decay “strongly”. The decays of heavy
quarkonia have been in fact investigated very thoroughly [Kö89] so as to ob-
tain the most accurate possible picture of the quark-antiquark interaction.
There are in principle four different ways in which quarkonia can change its
state or decay. They are:

a)A change of excitation level via photon emission (electromagnetic), e.g.,

χc1 (13P1) → J/ψ (13S1) + γ .

b)Quark-antiquark annihilation into real or virtual photons or gluons (elec-
tromagnetic or strong), e.g.,

  γγ γ g g g
virt.

c c
_

c c
_

c c
_

ηc (11S0)→2γ
J/ψ (13S1)→ggg → hadrons
J/ψ (13S1)→virt. γ → hadrons
J/ψ (13S1)→virt. γ → leptons .

The J/ψ decays about 30% of the time electromagnetically into hadrons or
charged leptons and about 70% of the time strongly. The electromagnetic
route can, despite the smallness of α, compete with the strong one, since
in the strong case three gluons must be exchanged to conserve colour and
parity. A factor of α3

s thus lowers this decay probability (compared to α2

in the electromagnetic case). States such as ηc, which have J = 0, can
decay into two gluons or two real photons. The decay of the J/ψ (J = 1)
is mediated by three gluons or a single virtual photon.

c) Creation of one or more light qq pairs from the vacuum to form light
mesons (strong interaction)
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ψ(3770) → D0 + D0

}}

c c

cc

uu

D0 D0

d)Weak decay of one or both heavy quarks, e.g.,

J/ψ → D−
s + e+ + νe

c

sc e+

W+

νe

In practice the weak decay (d) is unimportant since the strong and elec-
tromagnetic decays proceed much more quickly. The strong decay (c) is, in
principle, the most likely, but this can only take place above a certain thresh-
old since the light qq pairs need to be created from the quarkonia binding
energy. Hence only options (a) and (b) are available to quarkonia below this
threshold.

Electromagnetic processes like deexcitation via photon emission are rel-
atively slow. Furthermore, although hadronisation via the annihilation (b)
into gluons is a strong process such decays are, according to the Zweig rule
(cf. Sect. 9.2) suppressed relative to those decays (c) where the initial quarks
still exist in the final state. For these reasons the width of those quarkonium
levels below the mesonic threshold is very small (e.g., Γ = 88 keV for the
J/ψ).

The first charmonium state beyond this threshold is the ψ (13D1) which
has a mass of 3770 MeV/c2. It has, compared to the J/ψ, rather a large width,
Γ ≈ 24 MeV. For the more strongly bound bb system the decay channel
into mesons with b-quarks is first open to the third excitation, the Υ (43S1)
(10 580 MeV/c2) (cf. Fig. 13.9).

The lightest quarks are the u- and d-quarks and their pair production
opens the mesonic decay channels. Charmonium, say, decays into
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cc → cu + cu ,
cc → cd + cd ,

where cu is called the D0 meson, cu the D0, cd the D+ and cd the D−. The
masses of these mesons are 1864.6 MeV/c2 (D0) and 1869.3 MeV/c2 (D±).
The preferred decays of bottonium are analogously

bb → bu + bu ,
bb → bd + bd .

These mesons are called2 B− and B+ (m = 5278.9 MeV/c2), as well as B0

and B0 (m = 5279.2 MeV/c2). For higher excitations decays into mesons with
s-quarks are also possible:

cc → cs + cs (D+
s and D−

s ) ,
bb → bs + bs (B0

s and B0
s ) .

Such mesons are accordingly heavier. The mass of D±
s meson is, for example,

1968.5 MeV/c2. All of these mesons eventually decay weakly into lighter
mesons such as pions.

13.7 Decay Widths as a Test of QCD

The decays and decay rates of quarkonia can provide us with information
about the strong coupling constant αs. Let us consider the 11S0 charmonium
state (ηc) which can decay into either two photons or two gluons. (In the latter
case we will only experimentally observe the end products of hadronisation.)
Measurements of the ratio of these two decay widths can determine αs, in
principle, in a very elegant way.

The formula for the decay width into 2 real photons is essentially just the
same as for positronium (13.5), one needs only to recall that the c-quarks
have fractional electric charge zc =2/3 and come in three flavours.

Γ (11S0 → 2γ) =
3 · 4πz4cα2

�
3

m2
cc

|ψ(0)|2 (1 + ε′) . (13.13)

The ε′ term signifies higher order QCD corrections which can be approxi-
mately calculated.

To consider the 2 gluon decay, one must replace α by αs. In contrast to
photons, gluons do not exist as real particles but rather have to hadronise. For

2 The standard nomenclature for mesons containing heavy quarks is such that the
neutral meson with a b-quark is called a B0 and the meson with a b is known
as a B0. An electrically neutral qq state is marked with a bar, if the heavier
quark/antiquark is negatively charged [PD98].
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this process we set the strong coupling constant to one. The different colour-
anticolour combinations also mean we must use a different overall colour
factor which takes the various gluon combinations into account:

Γ (11S0 → 2g → hadrons) =
8π
3
α2

s�
3

m2
cc

|ψ(0)|2 (1 + ε′′) . (13.14)

ε′′ signifies QCD corrections once again.
The ratio of these decay widths is

Γ (2γ)
Γ (2g)

=
8
9
α2

α2
s

(1 + ε) . (13.15)

The correction factor ε itself depends upon αs and is about ε ≈ −0.5. From
the experimentally determined ratio Γ (2γ)/Γ (2g) ≈ (3.0±1.2) ·10−4 [PD98]
one finds the value αs(m2

J/ψc
2) ≈ 0.25±0.05. This is consistent with the value

from the charmonium spectrum. From (8.6) we see that αs always depends
upon a distance or, equivalently, energy or mass scale. In this case the scale
is fixed by the constituent mass of the c-quark or by the J/ψ mass.

The above result, despite the simplicity of the original idea, suffers from
both experimental and theoretical uncertainties. As well as QCD corrections,
there are further corrections from the relativistic motion of the quarks. For
a better determination of αs from charmonium physics one can investigate
other decay channels. The comparison, for instance, of the decay rates

Γ (J/ψ → 3g → hadrons)
Γ (J/ψ → γ → 2 leptons)

∝ α3
s

α2
, (13.16)

is simpler from an experimental viewpoint. Both here and in studies of other
channels one finds αs(m2

J/ψc
2) ≈ 0.2 · · · 0.3 [Kw87].

The comparison of various bottonium decays yields the coupling strength
α in a more accurate way since both QCD corrections and relativistic effects
are smaller. From QCD one expects αs to be smaller, the coupling is supposed
to decrease with the separation. This is indeed the case. One finds from the
ratio

iΓ (Υ → γgg → γ + hadrons)
iΓ (Υ → ggg → hadrons)

∝ α

αs
, (13.17)

which is (2.75 ± 0.04), that αs(m2
Υ c

2) = 0.163 ± 0.016 [Ne97]. The error is
dominated by uncertainties in the theoretical corrections.

These examples demonstrate that the annihilation of a qq pair in both
the electromagnetic and strong interactions may formally be described in the
same manner. The only essential difference is the coupling constant. This
comparison can be understood as a test of the applicability of QCD at short
distances, which, after all, is where the qq annihilation takes place. In this
region QCD and QED possess the same structure since both interactions are
well described by the exchange of a single vector boson (a gluon or a photon).
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Problems

1. Weak charge
Bound states are known to exist for the strong interaction (hadrons, nuclei),
electromagnetism (atoms, solids) and gravity (the solar system, stars) but we
do not have such states for the weak force. Estimate, in analogy to positronium,
how heavy two particles would have to be if the Bohr radius of their bound state
would be rougly equal to the range of the weak interaction.

2. Muonic and hadronic atoms
Negatively charged particles that live long enough (μ−, π−, K−, p, Σ−, Ξ−,
Ω−), can be captured by the field of an atomic nucleus. Calculate the energy
of atomic (2p→1s) transitions in hydrogen-type “atoms” where the electron is
replaced by the above particles. Use the formulae of Chap. 13. The lifetime of
the 2p state in the H atom is τH = 1.76·109 s. What is the lifetime, as determined
from electromagnetic transitions, of the 2p state in a pp system (protonium)?
Remember to take the scaling of the matrix element and of phase space into
account.

3. Hyperfine structure
In a two-fermion system the hyperfine structure splitting between the levels
13S1 and 11S0 is proportional to the product of the magnetic moments of the
fermions, ΔE ∝ |ψ(0)|2μ1μ2, where μi = gi

ei
2mi

. The g-factor of the proton is
gp = 5.5858 and those of the electron and the muon are ge ≈ gμ ≈ 2.0023.
In positronium an additional factor of 7/4 arises in the formula for ΔE, which
takes the level shifts of the triplet state by pair annihilation graphs into account.
In the hydrogen atom, the level splitting corresponds to a transition frequency
fH = 1420 MHz. Estimate the values for positronium and muonium (μ+e−).

(Hint: ψ(0) ∝ r
−3/2
b ; use the reduced mass in the expression for |ψ(0)|2.)

Compare your result with the measured values of the transition frequencies,
203.4 GHz for positronium and 4.463 GHz for muonium. How can the (tiny)
difference be explained?

4. B-meson factory
Υ -mesons with masses 10.58 GeV/c2 are produced in the reaction e+e− → Υ (4S)
at the DORIS and CESR storage rings. The Υ (4S)-mesons are at rest in the
laboratory frame and decay immediately into a pair of B-mesons: Υ → B+B−.
The mass mB of the B-mesons is 5.28 GeV/c2 and the lifetime τ is 1.5 psec.
a) How large is the average decay length of the B-mesons in the laboratory

frame?
b) To increase the decay length, the Υ (4S)-mesons need to be given momentum

in the laboratory frame. This idea is being employed at SLAC where a “B-
factory” is being built where electrons and positrons with different energies
collide. What momentum do the B-mesons need to have, if their average
decay length is to be 0.2 mm?

c) What energy do the Υ (4S)-mesons, in whose decay the B-mesons are pro-
duced, need to have for this?

d) What energy do the electron and positron beams need to have to produce
these Υ (4S)-mesons? To simplify the last three questions, without altering
the result, assume that the B-mesons have a mass of 5.29 GeV/c2 (instead
of the correct 5.28 GeV/c2).
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We have seen that the mesons containing the heavy c- and b-quarks may be
relatively simply described. In particular since charmonium and bottonium
have very different masses they cannot be confused with each other. Further-
more the D and B mesons may be straightforwardly identified with specific
quark-antiquark flavour and charge combinations.

Turning now to those mesons that are solely built out of the light flavours
(i.e., u, d and s) we encounter a more complicated situation. The constituent
masses of these quarks, especially those of the u- and d-quarks, are so similar
that we cannot expect to straightforwardly distinguish the mesons according
to their quark content but must expect to encounter mixed states of all three
light flavours. We shall therefore now consider all of the mesons that are made
up of u-, d- and s-quarks.

Another consequence of the light quark masses is that we cannot expect to
treat these mesons in a nonrelativistic manner. However, our investigation of
the light meson spectrum will lead us to the surprising conclusion that these
particles can be at least semi-quantitatively described in a nonrelativistic
model. The constituent quark concept is founded upon this success.

14.1 Mesonic Multiplets

Mesonic quantum numbers. We assume that the quarks and antiquarks
of the lowest lying mesons do not have any relative orbital angular momentum
(L = 0). We will only treat such states in what follows. Recall first that
quarks and antiquarks have opposite intrinsic parities and so these mesons
all have parity, (−1)L+1 =−1. The quark spins now determine the mesonic
total angular momentum. They can add up to either S = 1 or S = 0. The
JP = 0− states are called pseudoscalar mesons while the JP = 1− are the
vector mesons. One naturally expects 9 different meson combinations from
the 3 quarks and 3 antiquarks.

Isospin and strangeness. Let us initially consider just the two lightest
quarks. Since the u- and d-quark constituent masses are both around 300
MeV/c2 (see Table 9.1) there is a natural mixing of degenerate states with
the same quantum numbers. To describe uu- and dd-quarkonia it is helpful
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to introduce the idea of isospin. The u- and d-quarks form an isospin doublet
(I = 1/2) with I3 = +1/2 for the u-quark and I3 = −1/2 for the d quark.
This strong isospin is conserved by the strong interaction which does not
distinguish between directions in strong isospin space. Quantum mechani-
cally isospin is treated like angular momentum, which reflects itself in isospin
addition and the use of ladder operators. The spins of two electrons may
combine to form a (spin-)triplet or a singlet, and we can similarly form an
(isospin-)triplet or singlet from the 2 × 2 combinations of a u- or a d-quark
with a u- or a d-quark.

These ideas must be extended to include the s-quark. Its flavour is associ-
ated with a further additive quantum number, strangeness. The s-Quark has
S=−1 and the antiquark S = +1. Mesons containing one s (anti)quark are
eigenstates of the strong interaction, since strangeness can only be changed
in weak processes. Zero strangeness ss states on the other hand can mix with
uu and dd states since these possess the same quantum numbers. Note that
the somewhat larger s-quark constituent mass of about 450 MeV/c2 implies
that this mixing is smaller than that of uu and dd states.

Group theory now tells us that the 3 × 3 combinations of three quarks
and three antiquarks form an octet and a singlet. Recall that the 3 × 3
combinations of colours and anticolours also form an octet and a singlet
for the case of the gluons (Sect. 8.3). The underlying symmetry is known as
SU(3) in group theory.

We will see below that the larger s-mass leads to this symmetry being less
evident in the spectrum. Thus while the mesons inside an isospin triplet have
almost identical masses, those of an octet vary noticeably. Were we now to
include the c-quark in these considerations we would find that the resulting
symmetry was much less evident in the mesonic spectrum.

Vector mesons. Light vector mesons are produced in e+e− collisions, just
as heavy quarkonia can be. As we saw in Sect. 9.2 (Fig. 9.4) there are three
resonances at a centre of mass energy of around 1 GeV. The highest one is at
1019 MeV and is called the φ meson. Since the φ mostly decays into strange
mesons, it is interpreted as the following ss state:

|φ〉 = |s↑s↑〉 ,

where the arrows signify the 3-component of the quark spins. The pair of light
resonances with nearly equal masses, the 
 and ω mesons, are interpreted as
mixed states of u- and d-quarks.

The broad first resonance at 770 MeV is called the 
0 meson. It has two
charged partners with almost the same mass. These arise in other reactions.
Together they form the isospin triplet: 
+, 
0, 
−. These 
 mesons are states
with isospin 1 built out of the u-, u-, d- and d-quarks. They may be easily
constructed if we recall the quark quantum numbers given in Table 14.1. The
charged 
 mesons are then the states
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Table 14.1. The quantum numbers of the light quarks and antiquarks: B = baryon
number, J = spin, I = isospin, I3 = 3-component of the isospin, S = strangeness,
Q/e = charge.

B J I I3 S Q/e

u +1/3 1/2 1/2 +1/2 0 +2/3
d +1/3 1/2 1/2 −1/2 0 −1/3
s +1/3 1/2 0 0 −1 −1/3

u −1/3 1/2 1/2 −1/2 0 −2/3

d −1/3 1/2 1/2 +1/2 0 +1/3
s −1/3 1/2 0 0 +1 +1/3

|
+〉 = |u↑d↑〉 |
−〉 = |u↑d↑〉 ,

with I = 1 and I3 = ±1. We may now construct their uncharged partner (for
example by applying the ladder operators I±). We find

|
0〉 =
1√
2

{
|u↑u↑〉 − |d↑d↑〉

}
.

The orthogonal wave function with zero isospin is then just the ω-meson:

|ω〉 =
1√
2

{
|u↑u↑〉 + |d↑d↑〉

}
.

In contradistinction to coupling the angular momentum of two spin half par-
ticles there is here a minus sign in the triplet state and a plus in the singlet.
The real reason for this is that we have here particle-antiparticle combinations
(see, e.g., [Go84]).

Vector mesons with strangeness S �= 0 are called K∗ mesons and may be
produced by colliding high energy protons against a target:

p + p → p + Σ+ + K*0 .

The final state in such experiments must contain an equal number of s-quarks
and -antiquarks bound inside hadrons. In this example the K∗0 contains the s-
antiquark and the Σ+-baryon contains the s-quark. Strangeness is a conserved
quantum number in the strong interaction.

There are four combinations of light quarks which each have just one s-
or s-quark:

|K*−〉 = |s↑u↑〉 |K∗0〉 = |s↑d↑〉
|K*+〉 = |u↑s↑〉 |K∗0〉 = |d↑s↑〉 .
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Fig. 14.1. The lightest vector (JP = 1−) (left) and pseudoscalar mesons (JP = 0−)
(right), classified according to their isospin I3 and strangeness S.

The two pairs K*−, K∗0 and K*0, K*+ are both strong isospin doublets.
The 
, ω, φ and K∗ are all of the possible 3 × 3 = 9 combinations. They

have all been seen in experiments — which is clear evidence of the correctness
of the quark model.1 This classification is made clear in Fig. 14.1. The vector
mesons are ordered according to their strangeness S and the third component
of the isospin I3. The threefold symmetry of this scheme is due to the three
fundamental quark flavours from which the mesons are made. Mesons and
antimesons are diagonally opposite to each other and the three mesons at the
centre are each their own antiparticles.

Pseudoscalar mesons. The quark and antiquark pair in pseudoscalar
mesons have opposite spins and their angular momentum and parity are
JP = 0−. The name “pseudoscalar” arises as follows: spin-0 particles are
usually called scalars, while spin-1 particles are known as vectors, but scalar
quantities should be invariant under parity transformations. The prefix
”‘pseudo”’ reflects that these particles possess an unnatural, odd (negative)
parity.

The quark structure of the pseudoscalar mesons mirrors that of the vector
mesons (Fig. 14.1). The π meson isospin triplet corresponds to the 
 meson.
The pseudoscalars with the quark content of the K∗ vector mesons are known
as K mesons. Finally, the η′ and η correspond to the φ and the ω. There are,
however, differences in the quark mixings in the isospin singlets. As shown in
Fig. 14.1 there are three mesonic states with the quantum numbers S=I3 =0.
These are a symmetric flavour singlet and two octet states. One of these last
two has isospin 1 and is therefore a mixture of uu and dd. The π0 and 
0

occupy this slot in their respective multiplets. The remaining octet state and

1 Historically it was the other way around. The quark model was developed so as
to order the various mesons into multiplets and hence explain the mesons.
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the singlet can mix with each other since the SU(3) flavour symmetry is
broken (ms �= mu,d). This mixing is rather small for the pseudoscalar case
and η and η′ are fairly pure octet and singlet states:

| η 〉 ≈ | η8 〉=
1√
6

{
|u↑u↓〉 + |d↑d↓〉 − 2|s↑s↓〉

}
,

| η′ 〉 ≈ | η1 〉=
1√
3

{
|u↑u↓〉 + |d↑d↓〉 + |s↑s↓〉

}
.

The vector meson octet and singlet states are, on the other hand, more
strongly mixed. It so happens that the mixing angle is roughly arctan 1/

√
2,

which means that the φ meson is an almost pure ss state and that the ω is a
mix of uu and dd whose strange content can safely be neglected [PD98].

14.2 Meson Masses

The masses of the light mesons can be read off from Fig. 14.2. It is striking
that the J = 1 states have much larger masses than their J = 0 partners.
The gap between the π and 
 masses is, for example, about 600 MeV/c2.
This should be contrasted with the splitting of the 11S0 and 13S1 states of
charmonium and bottonium, which is only around 100 MeV/c2.

Just as for the states of heavy quarkonia with total spins S = 0 and
S = 1, the mass difference between the light pseudoscalars and vectors can
be traced back to a spin-spin interaction. From (13.10) and (13.11) we find
a mass difference of

M
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2
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Fig. 14.2. The spectrum of the light pseudoscalar and vector mesons. The multi-
plets are ordered according to their strangeness S and isospin I. The angular mo-
menta of the various mesons are indicated by arrows. Note that the vector mesons
are significantly heavier than their pseudoscalar equivalents.
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ΔMss =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3 · 8�
3

9c3
παs

mqmq
|ψ(0)|2 for pseudoscalar mesons ,

+1 · 8�
3

9c3
παs

mqmq
|ψ(0)|2 for vector mesons .

(14.1)

Note the dependence of the mass gap on the constituent quark masses. The
increase of the gap as the constituent mass decreases is the dominant effect,
despite an opposing tendency from the |ψ(0)|2 term (this is proportional to
1/r3b and thus grows with the quark mass). Hence this mass gap is larger for
the light systems.

The absolute masses of all the light mesons can be described by a phen-
omenological formula

Mqq = mq +mq +ΔMss , (14.2)

wheremq,q once again refers to the constituent quark mass. The unknowns in
this equation are the constituent masses of the three light quarks. We assume
that the u and d masses are the same, and that the product αs · |ψ(0)|2 is
to a rough approximation the same for all of the mesons under consideration
here. We may now, with the help of (14.2), extract the quark masses from
the experimental results for the meson masses. We thus obtain the following
constituent quark masses: mu,d ≈ 310 MeV/c2, ms ≈ 483 MeV/c2 [Ga81].
The use of these values yields mesonic masses which only deviate from their
true values at the level of a few percent (Table 14.2). These light quark
constituent masses are predominantly generated by the cloud of gluons and
virtual quark-antiquark pairs that surround the quark. The bare masses are

Table 14.2. Light meson masses both from experiment and from (14.2) [Ga81].
The calculations are fitted to the average mass of an isospin multiplet and do not
cover those, albeit minor, mass differences arising from electromagnetic effects.

Mass [MeV/c2]
Meson JP I

Calculated Experiment

π 0− 1 140

{
135.0 π0

139.6 π±

K 0− 1/2 485

{
497.7 K0

493.7 K−

η 0− 0 559 547.3

η′ 0− 0 — 957.8

 1− 1 780 770.0

K* 1− 1/2 896

{
896.1 K*0

891.7 K*−

ω 1− 0 780 781.9

φ 1− 0 1032 1019.4
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only around 5–10 MeV/c2 for the u- and d-quarks and about 150 MeV/c2

for the s. This simple calculation of the mesonic masses demonstrates that
the constituent quark concept is valid, even for those quarks with only a tiny
bare mass.

It is actually highly surprising that (14.2) describes the mesonic spectrum
so very well. After all the equation takes no account of possible mass terms
which could depend upon the quark kinetic energy or upon the strong po-
tential (13.6). It appears to be a peculiarity of the potential of the strong
interaction that its make up from a Coulombic and a linearly increasing term
effectively cancels these mass terms to a very good approximation.

14.3 Decay Channels

The masses and quantum numbers of the various mesons may also be used to
make sense of how these particles decay. The most important decay channels
of the pseudoscalar and vector mesons treated here are listed in Table 14.3.

We start with the lightest mesons, the pions. The π0 is the lightest of
all the hadrons and so, although it can decay electromagnetically, it cannot
decay strongly. The π± can, on the other hand, only decay semileptonically,
i.e., through the weak interaction. This is because conservation of charge and
of lepton number require that the final state must comprise of a charged
lepton and a neutrino. This means that these mesons have long lifetimes.
The decay π−→ e− + νe is strongly suppressed compared to π−→ μ− + νμ

because of helicity conservation (see p. 146).
The next heaviest mesons are the K mesons (kaons). Since these are the

lightest mesons containing an s-quark, their decay into a lighter particle
requires the s-quark to change its flavour, which is only possible in weak
processes. Kaons are thus also relatively long lived. They decay both non-
leptonically (into pions) and semileptonically. The decay of the K0 is a case
for itself and will be treated in Sect. 14.4 in some depth.

As pions and kaons are both long lived and easy to produce it is possible to
produce beams of them with a definite momentum. These beams may then be
used in scattering experiments. High energy pions and kaons can furthermore
be used to produce secondary particle beams of muons or neutrinos if they
are allowed to decay in flight.

The strong decays of vector mesons are normally into their lighter pseu-
doscalar counterparts with some extra pions as a common byproduct. The
decays of the 
 and the K∗ are typical here. Their lifetimes are roughly
10−23 s.

The ω meson, in contrast to the 
, is not allowed to strongly decay into
two pions for reasons of isospin and angular momentum conservation. More
precisely, this is a consequence of G-parity conservation in the strong inter-
action. G-parity is a combination of C-parity and isospin symmetry [Ga66]
and will not be treated here.
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Table 14.3. The most important decay channels of the lightest pseudoscalar and
vector mesons. The resonance’s width is often given, instead of the lifetime, for
those mesons which can decay in strong processes. The two quantities are related
by Γ = �/τ (where � = 6.6 · 10−22 MeV s).

Most common
Meson Lifetime [s]

decay channels
Comments

μ± (−)
νμ ≈ 100%

π± 2.6 · 10−8

e±
(−)
νe 1.2 · 10−4 (see Sect. 10.7)

π0 8.4 · 10−17 2γ 99% Electromagnetic

μ± (−)
νμ 64%

K± 1.2 · 10−8 π±π0 21%
3π 7%

K0
S 8.9 · 10−11 2π ≈ 100%

3π 34%
(K0decay:

πμν 27%
see Sect. 14.4)

K0
L 5.2 · 10−8

πeν 39%
2π 3 · 10−3 CP violating

3π 55% Electromagnetic

P
se

u
d
o
sc

a
la

r
m

es
o
n
s

η 5.5 · 10−19

2γ 39% Electromagnetic

ππη 65%
η′ 3.3 · 10−21

0γ 30% Electromagnetic

 4.3 · 10−24 2π ≈ 100%

K* 1.3 · 10−23 Kπ ≈ 100%

ω 7.8 · 10−23 3π 89%

2K 83%

V
ec

to
r

m
es

o
n
s

φ 1.5 · 10−22

π 13% Zweig-suppressed

How the φ decays has already been mentioned in Sect. 9.2 (p. 120). Ac-
cording to the Zweig rule it prefers to decay into a meson with an s-quark and
one with an s, or, in other words, into a pair of kaons. Since their combined
mass is almost as large as that of the original φ, the phase space available is
small and the φ meson consequently has a relatively long lifetime.

The η and η′ decay in a somewhat unusual manner. It is easily seen that
the η is not allowed to strongly decay into two pions. Note first that the two
pion state must have relative angular momentum � = 0. This follows from
angular momentum conservation: both the η and π have spin 0, the pion
has odd intrinsic parity and the final two pion state must have total parity
Pππ = (−1)2 · (−1)�=0 = +1. The η has, however, negative parity and so this
final state can only be reached by a weak process. A decay into three pions
can conserve parity but not isospin since pions, for reasons of symmetry,
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cannot couple to zero isospin. The upshot is that the η predominantly decays
electromagnetically, as isospin need not then be conserved, and its lifetime is
orders of magnitudes greater than those of strongly decaying particles.

The η′ prefers to decay into ππη but this rate is still broadly comparable to
that of its electromagnetic decay into 
γ. This shows that the strong process
must also be suppressed and the η′ must have a fairly long lifetime. The story
underlying this is a complicated one [Ne91] and will not be recounted here.

14.4 Neutral Kaon Decay

The decays of the K0 and the K0 are of great importance for our under-
standing of the P- and C-parities (spatial reflection and particle-antiparticle
conjugation).

Neutral kaons can decay into either two or three pions. The two pion final
state must have positive parity, recall our discussion of the decay of the η,
while the three pion system has negative parity. The fact that both decays
are possible is a classic example of parity violation.

K0 and K0 mixing. Since the K0 and K0 can decay into the same final
states, they can also transform into each other via an intermediate state of
virtual pions [Ge55]:

K0 ←→
{

2π
3π

}
←→ K0 .

In terms of quarks this oscillation corresponds to box diagrams:

W W

W

W

s
 _
d s

 _
d

u,c,t

u,c,t
u,c,t u,c,t

_ _ _

d d
_
s

_
s

 _
K 0

 _
K 0

K 0K 0

CP conservation. This possible mixing of particles and antiparticles leads
to highly interesting effects. In Sect. 10.7 we said that the weak interaction
violates parity maximally. This was particularly clear for the neutrino, which
only occurs as a left handed particle |νL〉 and a right handed antiparticle
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|νR〉. In K0 decay parity violation shows itself via decays into 2 and 3 pions.
For the neutrinos we further saw that the combined application of spatial
reflection and charge conjugation (P and C) lead to a physically allowed
state: CP|νL〉 → |νR〉. The V-minus-A theory of the weak interaction may be
so formulated that the combined CP quantum number is conserved.

Let us now apply this knowledge to the K0-K0 system. The 2 and 3
pion final states are both eigenstates of the combined CP operator and have
distinct eigenvalues

CP |π0π0〉 = +1 · |π0π0〉 CP |π0π0π0〉 = −1 · |π0π0π0〉
CP |π+π−〉 = +1 · |π−π+〉 CP |π+π−π0〉 = −1 · |π−π+π0〉 ,

but neither K0 nor K0 have well-defined CP parity:

CP |K0〉 = −1 · |K0〉 CP |K0〉 = −1 · |K0〉 .

The relative phase between the K0 and the K0 can be chosen arbitrarily. We
have picked the convention C|K0〉 = +|K0〉 and this together with the kaon’s
odd parity leads to the minus sign under the CP transformation.

If we suppose that the weak force violates both the P- and C-parities but
is invariant under CP then the initial kaon state has to have well-defined CP
parity before its decay. Such CP eigenstates can be constructed from linear
combinations in the following way:

|K0
1〉 =

1√
2

{
|K0〉 − |K0〉

}
where CP|K0

1〉 = +1 · |K0
1〉

|K0
2〉 =

1√
2

{
|K0〉 + |K0〉

}
where CP|K0

2〉 = −1 · |K0
2〉 .

This assumption, of CP conservation, means that we have to understand
the hadronic decay of a neutral kaon as the decay of either a K0

1 into two
pions or of a K0

2 into three pions. The two decay probabilities must differ
sharply from one another. The phase space available to the three pion decay
is significantly smaller than for the two pion case, this follows from the rest
mass of three pions being nearly that of the neutral kaon, and so the K0

2 state
ought to be much longer lived than its K0

1 sibling.
Kaons may be produced in large numbers by colliding high energy protons

onto a target. An example is the reaction p+n → p+Λ0+K0. The strong force
conserves strangeness S and so the neutral kaons are in an eigenstate of the
strong interaction. In the case at hand it is |K0〉 which has strangeness S=+1.
This may be understood in quantum mechanics as a linear combination of
the two CP eigenstates |K0

1〉 and |K0
2〉. In practice both in reactions where K0

and in those where K0 mesons are produced an equal mixture of short and
long lived particles are observed. These are called K0

S and K0
L (for short and

long) respectively (Table 14.3). The short lived kaons decay into two pions
and the long lived ones into three.
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CP violation. After a time of flight much longer than the lifetime of the
K0

S these shorter lived particles must have all decayed. Thus at a sufficient
distance from the production target we have a pure beam of K0

L particles.
Precision measurements have shown that these long lived kaons decay with a
tiny, but non-vanishing, probability into two, instead of three, pions [Ch64,
Kl92b, Gi97]. This must mean either that the K0

L mass eigenstate is not
identical to the K0

2 CP eigenstate or that the matrix element for the decay of
the K0

2 contains a term which permits a decay into two pions. In both cases
CP symmetry is broken.

Studies of the semileptonic decay of the K0
L

K0
L → π± + μ∓+

(−)
νμ K0

L → π± + e∓+
(−)
νe

reveal an asymmetry between the creation of particles and antiparticles: there
is a slight preponderance of decays with positively charged leptons in the final
state (the ratio is 1.0033 : 1). This is a further, albeit very tiny, case of CP
violation.

CP violation has only been experimentally observed in this K0 ↔ K0

system. It is nevertheless expected that other electrically neutral meson-
antimeson systems will display similar behaviour: (D0 ↔ D0, B0 ↔ B0,
B0

s ↔ B0
s ). In 1987 B0-B0 mixing was indeed discovered at DESY [Al87a,

Al87b, Al92a]. CP violation in this system has, however, not yet been seen.

Problems
1. 0-decay

The 0 (JP = 1−, I = 1) almost 100% decays into π+ + π−. Why does it not
also decay into 2 π0?

2. D+-decay
D+(cd) decays into many channels. What value would you expect for the ratio:

R =
Γ (D+ → K− + π+ + π+)

Γ (D+ → π− + π+ + π+)
. (14.3)

3. Pion and kaon decay
High energy neutrino beams can be generated using the decay of high energy,
charged pions and kaons:

π± → μ±+
(−)
ν μ

K± → μ±+
(−)
ν μ .

a) What fraction F of the pions and kaons in a 200 GeV beam decays inside
a distance d = 100 m? (Use the particle masses and lifetimes given in Ta-
bles 14.2 and 14.3)

b) How large are the minimal and maximal neutrino energies in both cases?
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The best known baryons are the proton and the neutron. These are collec-
tively referred to as the nucleons. Our study of deep inelastic scattering has
taught us that they are composed of three valence quarks, gluons and a “sea”
of quark-antiquark pairs. The following treatment of the baryonic spectrum
will, analogously to our description of the mesons, be centred around the
concept of the constituent quark.

Nomenclature. This chapter will be solely concerned with those baryons
which are made up of u-, d- and s-quarks. The baryons whose valence quarks
are just u- and d-quarks are the nucleons (isospin I=1/2) and the Δ particles
(I = 3/2). Baryons containing s-quarks are collectively known as hyperons.
These particles, the Λ, Σ, Ξ and Ω, are distinguished from each other by their
isospin and the number of s-quarks they contain.

Name N Δ Λ Σ Ξ Ω

Isospin I 1/2 3/2 0 1 1/2 0

Strangeness S 0 −1 − 2 − 3

Number of s-quarks 0 1 2 3

The antihyperons have strangeness +1, +2 or +3 respectively.
The discovery of baryons containing c- and b-quarks has caused this

scheme to be extended. The presence of quarks heavier than the s is sig-
nified by an subscript attached to the relevant hyperon symbol: thus the Λ+

c

corresponds to a (udc) state and the Ξ++
cc has the valence structure (ucc).

Such heavy baryons will not, however, be handled in what follows.

15.1 The Production and Detection of Baryons

Formation experiments. Baryons can be produced in many different ways
in accelerators. In Sect. 7.1 we have already described how nucleon resonances
may be produced in inelastic electron scattering. These excited nucleon states
are also created when pions are scattered off protons.
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One can then study, for example, the energy (mass) and width (lifetime)
of the Δ++ resonance in the reaction

u      u    d

p

d     u
_

π+

u     u     u
Δ++

u      u     d

p

d     u
_

π+

π+ + p → Δ++ → p + π+

by varying the energy of the incoming pion beam
and measuring the total cross section. The largest
and lowest energy peak in the cross section is found
at 1232 MeV. This is known as the Δ++(1232).
The diagram shows its creation and decay in terms
of quark lines. In simple terms we may say that the
energy which is released in the quark-antiquark
annihilation is converted into the excitation energy
of the resonance and that this process is reversed
in the decay of the resonance to form a new quark-
antiquark pair. This short lived state decays about
0.5·10−23 s after it is formed and it is thus only pos-
sible to detect the decay products, i.e., the proton
and the π+. Their angular distribution, however,

may be used to determine the resonances’ spin and parity. The result is found
to be JP = 3/2+. The extremely short lifetime attests to the decay taking
place through the strong interaction. At higher centre of mass energies in
this reaction further resonances may be seen in the cross section. These cor-
respond to excited Δ++ states where the quarks occupy higher energy levels.

Strangeness may be brought into the game by re-

u     d    u

p

u     s
_

K−

u     d     s
Λ0, Σ0

u      d     u

p

u     s
_

K−

placing the pion beam by a kaon beam and one may
thus generate hyperons. A possible reaction is

K− + p → Σ∗0 → p + K− .

The intermediate resonance state, an excited state
of the Σ0, is, like the Δ++, extremely short lived
and “immediately” decays, primarily back into a
proton and a negatively charged kaon. The quark
line diagram offers a general description of all those
resonances whose quark composition is such that
they may be produced in this process. Thus ex-
cited Λ0’s may also be created in the above reac-
tion. The cross sections of the above reactions are
displayed in Fig. 15.1 as functions of the centre of
mass energy. The resonance structures may be eas-
ily recognised. The individual peaks, which give us

the masses of the excited baryon states, are generally difficult to separate from
each other. This is because their widths are typically of the order of 100 MeV
and the various peaks hence overlap. Such large widths are characteristic for
particles which decay via strong processes.
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Fig. 15.1. The total and elastic cross sections for the scattering of π+ mesons off
protons (top) and of K− mesons off protons (bottom) as a function of the mesonic
beam energy (or centre of mass energy) [PD98]. The peaks are associated with short
lived states, and since the total initial charge in π+p scattering is +2e the relevant
peaks must correspond to the Δ++ particle. The strongest peak, at a beam energy
of around 300 MeV/c is due to the ground state of the Δ++ which has a mass
of 1232 MeV/c2. The resonances that show up as peaks in the K−p cross section
are excited, neutral Σ and Λ baryons. The most prominent peaks are the excited
Σ0(1775) and Λ0(1820) states which overlap significantly.
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In formation experiments, like those treated above, the baryon which is
formed is detected as a resonance in a cross section. Due to the limited number
of particle beams available to us this method may only be used to generate
nucleons and their excited states or those hyperons with strangeness S = −1.

Production experiments. A more general way of generating baryons is
in production experiments. In these one fires a beam of protons, pions or
kaons with as high an energy as possible at a target. The limit on the energy
available for the production of new particles is the centre of mass energy
of the scattering process. As can be seen from Fig. 15.1, for centre of mass
energies greater than 3 GeV no further resonances can be recognised and the
elastic cross section is thereafter only a minor part of the total cross section.
This energy range is dominated by inelastic particle production.

In such production experiments one does not look for resonances in the
cross section but rather studies the particles which are created, generally in
generous quantities, in the reactions. If these particles are short lived, then
it is only possible to actually detect their decay products. The short lived
states can, however, often be reconstructed by the invariant mass method. If
the momenta pi and energies Ei of the various products can be measured,
then we may use the fact that the mass MX of the decayed particle X is given
by

M2
Xc

4 = p2Xc
2 =

(
∑

i

pic

)2

=

(
∑

i

Ei

)2

−
(
∑

i

pic

)2

. (15.1)

In practice one studies a great number of scattering events and calculates
the invariant mass of some particular combination of the particles which
have been detected. Short lived resonances which have decayed into these
particles reveal themselves as peaks in the invariant mass spectrum. On the
one hand we may identify short lived resonances that we already knew about
in this way, on the other hand we can thus see if new, previously unknown
particles are being formed.

As an example consider the invariant mass spectrum of the Λ0 + π+ final
particles in the reaction

K− + p → π+ + π− + Λ0 .

This displays a clear peak at 1385 MeV/c2 (Fig. 15.2) which corresponds to
an excited Σ+. The Σ∗+ baryon is therefore identified from its decay into
Σ∗+ → π+ + Λ0. Since this is a strong decay all quantum numbers, e.g.,
strangeness and isospin, are conserved. In the above reaction it is just as
likely to be the case that a Σ∗− state is produced. This would then decay
into Λ0 +π−. Study of the invariant masses yields almost identical masses for
these two baryons.1 This may also be read off from Fig. 15.2. The somewhat

1 The mass difference between the Σ∗− and the Σ∗+ is roughly 4MeV/c2 (see
Table 15.1 on p. 212).
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Fig. 15.2. Invariant mass spectrum of the particle combinations Λ0+π+ (left) and
Λ0 +π− (right) in the reaction K− +p → π+ +π− +Λ0. The momentum of the
initial kaon was 1.11 GeV/c. The events were recorded in a bubble chamber. Both
spectra display a peak around 1385 MeV/c2, which correspond to Σ∗+ and Σ∗−
respectively. A Breit-Wigner distribution (continuous line) has been fitted to the
peak. The mass and width of the resonance may be found in this way. The energy of
the pion which is not involved in the decay is kinematically fixed for any particular
beam energy. Its combination together with the Λ0 yields a “false” peak at higher
energies which does not correspond to a resonance (from [El61]).

flatter peak at higher energies visible in both spectra is a consequence of the
possibility to create either of these two charged Σ resonances: the momentum
and energy of the pion which is not created in the decay is fixed and so creates
a ”‘fictitious”’ peak in the invariant mass spectrum. This ambiguity can be
resolved by carrying out the experiment at differing beam energies. There
is a further small background in the invariant mass spectrum which is not
correlated with the above, i.e., it does not come from Σ∗± decay. We note
that the excited Σ state was first found in 1960 using the invariant mass
method [Al60].

If the baryonic state that we wish to investigate is already known, then
the resonance may be investigated in individual events as well. This is, for
example, important for the above identification of the Σ∗+, since the Λ0 itself
decays via Λ0 → p+π− and must first be reconstructed by the invariant mass
method. The detection of the Λ0 is rendered easier by its long lifetime of
2.6 ·10−10 s (due to its weak decay). On average the Λ0 transverses a distance
from several centimetres to a few metres, this depends upon its energy, before
it decays. From the tracks of its decay products the position of the Λ0’s decay
may be localised and distinguished from that of the primary reaction.

A nice example of such a step by step reconstruction of the initially cre-
ated, primary particles from a Σ−+nucleus reaction is shown in Fig. 15.3.
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Fig. 15.3. Detection of a baryon decay cascade at the WA89 detector at the CERN
hyperon beam (based upon [Tr92]). In this event a Σ− hyperon with 370 GeV
kinetic energy hits a thin carbon target. The paths of the charged particles thus
produced are detected near to the target by silicon strip detectors and further away
by drift and proportional chambers. Their momenta are determined by measuring
the deflection of the tracks in a strong magnetic field. The tracks marked in the
figure are based upon the signals from the various detectors. The baryonic decay
chain is described in the text.

The method of invariant masses could be used to show a three step process
of baryon decays. The measured reaction is

Σ− + A → p + K+ + π+ + π− + π− + π− + A′ .

The initial reaction takes place at one of the protons of a nucleus A. All of
the particles in the final state were identified (except for the final nucleus A′)
and their momenta were measured. The tracks of a proton and a π− could
be measured in drift and proportional chambers and followed back to the
point (3), where a Λ0 decayed (as a calculation of the invariant mass of the
proton and the π− shows). Since we thus have the momentum of the Λ0 we
can extrapolate its path back to (2) where it meets the path of a π−. The
invariant mass of the Λ0 and of this π− is roughly 1320 MeV/c2 which is the
mass of the Ξ− baryon. This baryon can in turn be traced to the target at
(1). The analysis then shows that the Ξ− was in fact the decay product of a
primary Ξ∗0 state which “instantaneously” decayed via the strong interaction
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into a Ξ− and a π+. The complete reaction in all its glory was therefore the
following

Σ− + A → Ξ∗0 + K+ + π− + A′

|→ Ξ− + π+

|→ Λ0 + π−

|→ p + π− .

This reaction also exemplifies the associated production of strange particles:
the Σ− from the beam had strangeness −1 and yet produces in the collision
with the target a Ξ∗0 with strangeness −2. Since the strange quantum number
is conserved in strong interactions an additional K+ with strangeness +1 was
also created.

15.2 Baryon Multiplets

We now want to describe in somewhat more detail which baryons may be
built up from the u-, d- and s-quarks. We will though limit ourselves to
the lightest states, i.e., those where the quarks have relative orbital angular
momentum � = 0 and are not radially excited.

The three valence quarks in the baryon must, by virtue of their fermionic
character, satisfy the Pauli principle. The total baryonic wavefunction

ψtotal = ξspatial · ζflavour · χspin · φ colour

must in other words be antisymmetric under the exchange of any two of the
quarks. The total baryonic spin S results from adding the three individual
quark spins (s = 1/2) and must be either S = 1/2 or S = 3/2. Since we
demand that � = 0, the total angular momentum J of the baryon is just the
total spin of the three quarks.

The baryon decuplet. Let us first investigate the JP = 3/2+ baryons. Here
the three quarks have parallel spins and the spin wave function is therefore
symmetric under an interchange of two of the quarks. For � = 0 states this
is also true of the spatial wave function. Taking, for example, the uuu state
it is obvious that the flavour wave function has to be symmetric and this
then implies that the colour wave function must be totally antisymmetric in
order to yield an antisymmetric total wave function and so fulfil the Pauli
principle. Because baryons are colourless objects the totally antisymmetric
colour wave function can be constructed as follows:

φ colour =
1√
6

∑

α=r,g,b

∑

β=r,g,b

∑

γ=r,g,b

εαβγ |qαqβqγ〉 , (15.2)
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where we sum over the three colours, here denoted by red, green and blue,
and εαβγ is the totally antisymmetric tensor.

If we do not concern ourselves with radial excitations, we are left with
ten different systems that can be built out of three quarks, are JP = 3/2+

and have totally antisymmetric wave functions. These are
∣
∣Δ++

〉
=

∣
∣u↑u↑u↑〉 ∣

∣Δ+
〉

=
∣
∣u↑u↑d↑〉 ∣

∣Δ0
〉

=
∣
∣u↑d↑d↑〉 ∣

∣Δ−〉
=

∣
∣d↑d↑d↑〉

∣
∣Σ∗+

〉
=

∣
∣u↑u↑s↑

〉 ∣
∣Σ∗0

〉
=

∣
∣u↑d↑s↑

〉 ∣
∣Σ∗−〉

=
∣
∣d↑d↑s↑

〉

∣∣Ξ∗0
〉

=
∣∣u↑s↑s↑

〉 ∣∣Ξ∗−
〉

=
∣∣d↑s↑s↑

〉

∣
∣Ω−〉

=
∣
∣s↑s↑s↑

〉
.

Note that we have only given the spin-flavour part of the total baryonic wave
function here, and that in an abbreviated fashion. It must be symmetric
under quark exchange. In the above notation this is evident for the pure uuu,
ddd and sss systems. For baryons built out of more than one quark flavour
the symmetrised version contains several terms. Thus then the symmetrised
part of the wave function of, for example, the Δ+ reads more fully:

|Δ+〉 =
1√
3

{
|u↑u↑d↑〉 + |u↑d↑u↑〉 + |d↑u↑u↑〉

}
.

In what follows we will mostly employ the abbreviated notation for the bary-
onic quark wave function and quietly assume that the total wave function
has in fact been correctly antisymmetrised.

If we display the states of this baryon decuplet on an I3 vs. S plot, we
obtain (Fig. 15.4) an isosceles triangle. This reflects the threefold symmetry
of these three-quark systems.

The baryon octet. We are now faced with the question of bringing the
nucleons into our model of the baryons. If three quarks, each with spin 1/2,
are to yield a spin 1/2 baryon, then the spin of one of the quarks must
be antiparallel to the other two, i.e., we must have ↑↑↓. This spin state is
then neither symmetric nor antisymmetric under spin swaps, but rather has
a mixed symmetry. This must then also be the case for the flavour wave
function, so that their product, the total spin-flavour wave function, is purely
symmetric. This is not possible for the uuu, ddd and sss quark combinations
and indeed we do not find any ground state baryons of this form with J = 1/2.
There are then only two different possible combinations of u and d quarks
which can fulfil the necessary symmetry conditions on the wave function of
a spin 1/2 baryon, and these are just the proton and the neutron.

This simplified treatment of the derivation of the possible baryonic states
and their multiplets can be put on a firmer quantitative footing with the help
of SU(6) quark symmetry, we refer here to the literature (see, e.g., [Cl79]).
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The proton and neutron wave functions may be schematically written as

|p↑〉 = |u↑u↑d↓〉 |n↑〉 = |u↓d↑d↑〉 .

We now want to construct the symmetrised wave function. For a proton with,
e.g., the z spin component mJ =+1/2, we may write the spin wave function
as a product of the the spin wave function of one quark and that of the
remaining pair:

χp(J= 1
2 ,mJ = 1

2 ) =
√

2/3χuu(1, 1)χd( 1
2 ,−

1
2 ) −

√
1/3χuu(1, 0)χd( 1

2 ,
1
2 ) .

(15.3)
Here we have chosen to single out the d-quark and coupled the u-quark pair.
(If we initially single out one of the u-quarks we obtain the same result, but
the notation becomes much more complicated.) The factors in this equation
are the Clebsch-Gordan coefficients for the coupling of spin 1 and spin 1/2.
Replacing χ(1, 0) by the correct spin triplet wave function (↑↓+↓↑)/

√
2 then

yields in our spin-flavour notation

|p↑〉 =
√

2/3 |u↑u↑d↓〉 −
√

1/6 |u↑u↓d↑〉 −
√

1/6 |u↓u↑d↑〉 . (15.4)

This expression is still only symmetric in terms of the exchange of the first
and second quarks, and not for two arbitrary quarks as we need. It can,
however, be straightforwardly totally symmetrised by swapping the first and
third as well as the second and third quarks in each term of this last equation
and adding these new terms. With the correct normalisation factor the totally
symmetric proton wave function is then

|p↑〉 =
1√
18

{
2 |u↑u↑d↓〉 + 2 |u↑d↓u↑〉 + 2 |d↓u↑u↑〉 − |u↑u↓d↑〉

−|u↑d↑u↓〉 − |d↑u↑u↓〉 − |u↓u↑d↑〉 − |u↓d↑u↑〉 − |d↑u↓u↑〉
}
. (15.5)

The neutron wave function is trivially found by exchanging the u- and d-
quarks:

|n↑〉 =
1√
18

{
2 |d↑d↑u↓〉 + 2 |d↑u↓d↑〉 + 2 |u↓d↑d↑〉 − |d↑d↓u↑〉

−|d↑u↑d↓〉 − |u↑d↑d↓〉 − |d↓d↑u↑〉 − |d↓u↑d↑〉 − |u↑d↓d↑〉
}
. (15.6)

The nucleons have isospin 1/2 and so form an isospin doublet. A further
doublet may be produced by combining two s-quarks with a light quark. This
is schematically given by

|Ξ0↑〉 = |u↓s↑s↑〉 |Ξ−↑〉 = |d↓s↑s↑〉 . (15.7)

The remaining quark combinations are an isospin triplet and a singlet:



210 15 The Baryons

-1

0

-2

0-1 +1 -1 0 +1

Σ*-

Δ-
S

I3 I3

-3

Δ0 Δ+ Δ++

Σ*0 Σ*+

Ξ*- Ξ*0

Ω-
Ξ- Ξ0

Σ- Σ0 Σ+

n p

JP= 3
+

         2 JP= 1
+

         2

Λ0

Fig. 15.4. The baryon JP = 3/2+ decuplet (left) and the JP = 1/2+ octet (right)
in I3 vs. S plots. In contradistinction to the mesonic case the baryon multiplets are
solely composed of quarks. Antibaryons are purely composed of antiquarks and so
form their own, equivalent antibaryon multiplets.

|Σ+↑〉 = |u↑u↑s↓〉
|Σ0↑〉 = |u↑d↑s↓〉 |Λ0↑〉 = |u↑d↓s↑〉
|Σ−↑〉 = |d↑d↑s↓〉 .

(15.8)

Note that the uds quark combination appears twice here and depending upon
the relative quark spins and isospins can correspond to two different particles.
If the u and d spins and isospins couple to 1, as they do for the charged Σ
baryons, then the above quark combination is a Σ0. If they couple to zero we
are dealing with a Λ0. These two hyperons have a mass difference of about
80 MeV/c2. This is evidence that a spin-spin interaction must also play an
important role in the physics of the baryon spectrum. The eight JP = 1/2+

baryons are displayed in an I3 vs. S plot in Fig. 15.4. Note again the threefold
symmetry of the states.

15.3 Baryon Masses

The mass spectrum of the baryons is plotted in Fig. 15.5 against strangeness
and isospin. The lowest energy levels are the JP = 1/2+ and JP = 3/2+

multiplets, as can be clearly seen. It is also evident that the baryon masses
increase with the number of strange quarks, which we can put down to the
larger mass of the s-quark. Furthermore we can see that the JP = 3/2+

baryons are about 300 MeV/c2 heavier than their JP =1/2+ equivalents. As
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Fig. 15.5. The masses of the decuplet and octet baryons plotted against their
strangeness S and isospin I. The angular momenta J of the various baryons are
shown through arrows. The JP =3/2+ decuplet baryons lie significantly above their
JP =1/2+ octet partners.

was the case with the mesons, this effect can be traced back to a spin-spin
interaction

Vss(qiqj) =
4π
9

�
3

c
αs

σi · σj

mimj
δ(x) , (15.9)

which is only important at short distances. The observant reader may no-
tice that the 4/9 factor is only half that which we found for the quark-
antiquark potential in the mesons (13.10), this is a result of QCD consider-
ations. Eq. (15.9), it should be noted, describes only the interaction of two
quarks with each other and so to describe the baryon mass splitting we need
to sum the spin-spin interactions over all quark pairs. The easiest cases are
those like the nucleons, the Δ’s and the Ω where the constituent masses of
all three quarks are the same. Then we just have to calculate the expectation
values for the sums over σi · σj . Denoting the total baryon spin by S and
using the identity S2 = (s1 + s2 + s3)2 we find in a similar way to (13.11):

3∑

i,j=1
i<j

σi · σj =
4
�2

3∑

i,j=1
i<j

si · sj =

{
−3 for S = 1/2 ,

+3 for S = 3/2 .
(15.10)

The spin-spin energy (mass) splitting for these baryons is then just
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Table 15.1. The masses of the lightest baryons both from experiment and as fitted
from (15.12). The fits were to the average values of the various multiplets and are
in good agreement with the measured masses. Also included in this table are the
lifetimes and most important decay channels of these baryons [PD98]. The four
charged Δ resonances are not individually listed.

Mass [MeV/c2] Primary Decay
S I Baryon

theor. exp.
τ [s]

decay channels type

p 938.3 stable? — —
0 1/2

n
939

939.6 886.7 pe−νe 100 % weak

pπ− 64.1 % weak
0 Λ 1114 1115.7 2.63 · 10−10

nπ0 35.7 % weak

pπ0 51.6 % weak−1 Σ+ 1189.4 0.80 · 10−10

nπ+ 48.3 % weak

1 Σ0 1179 1192.6 7.4 · 10−20 Λγ ≈ 100 % elmgn.

Σ− 1197.4 1.48 · 10−10 nπ− 99.8 % weak

Ξ0 1315 2.90 · 10−10 Λπ0 ≈ 100 % weak

O
ct

et
(J

P
=

1 /
2
+
)

−2 1/2
Ξ− 1327

1321 1.64 · 10−10 Λπ− ≈ 100 % weak

0 3/2 Δ 1239 1232 0.55 · 10−23 Nπ 99.4 % strong

Σ*+ 1383

−1 1 Σ*0 1381 1384 1.7 · 10−23 Λπ 88 % strong

Σ*− 1387
Σπ 12 % strong

Ξ*0 1532
−2 1/2

Ξ*− 1529
1535

7 · 10−23 Ξπ ≈ 100 % strong

ΛK− 68 % weak

D
ec

u
p
le

t
(J

P
=

3 /
2
+
)

−3 0 Ω− 1682 1672.4 0.82 · 10−10 Ξ0π− 23 % weak
Ξ−π0 9 % weak

ΔMss =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3 · 4
9

�
3

c3
παs

m2
u,d

|ψ(0)|2 for the nucleons ,

+3 · 4
9

�
3

c3
παs

m2
u,d

|ψ(0)|2 for the Δ states ,

+3 · 4
9

�
3

c3
παs

m2
s

|ψ(0)|2 for the Ω baryon .

(15.11)

Here |ψ(0)|2 is the probability that two quarks are at the same place. Some-
what more complicated expressions may be obtained for those baryons made
up of a mixture of heavier s- and lighter u- or d-quarks (see the exercises).
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With the help of this mass splitting formula a general expression for the
masses of all the �=0 baryons may be written:

M =
∑

i

mi +ΔMss . (15.12)

The three unknowns here, i.e., mu,d, ms and αs|ψ(0)|2, may be obtained
by fitting to the experimental masses. As with the mesons we assume that
αs|ψ(0)|2 is roughly the same for all of the baryons. We so obtain the following
constituent quark masses: mu,d ≈ 363MeV/c2, ms ≈ 538MeV/c2 [Ga81].
The fitted baryon masses are within 1 % of their true values. (Table 15.1). The
constituent quark masses obtained from such studies of baryons are a little
larger than their mesonic counterparts. This is not necessarily a contradiction
since constituent quark masses are generated by the dynamics of the quark-
gluon interaction and the effective interactions of a three-quark system will
not be identical to those of a quark-antiquark one.

15.4 Magnetic Moments

The constituent quark model is satisfyingly successful when its predictions
for baryonic magnetic moments are compared with the results of experiment.
In Dirac theory the magnetic moment μ of a point particle with mass M and
spin 1/2 is

μDirac =
e�

2M
. (15.13)

This relationship has been experimentally confirmed for both the electron and
the muon. If the proton were an elementary particle without any substructure,
then its magnetic moment should be one nuclear magneton:

μN =
e�

2Mp
. (15.14)

Experimentally, however, the magnetic moment of the proton is measured to
be μp = 2.79μN.

Magnetic moments in the quark model. The proton magnetic moment
in the ground state, with � = 0, is a simple vectorial sum of the magnetic
moments of the three quarks:

μp = μu + μu + μd . (15.15)

The proton magnetic moment μp then has the expectation value

μp = 〈μp〉 = 〈ψp|μp|ψp〉 , (15.16)
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where ψp is the total antisymmetric quark wave function of the proton. To
obtain μp we merely require the spin part of the wave function, χp. From
(15.3) we thus deduce

μp =
2
3
(μu + μu − μd) +

1
3
μd =

4
3
μu − 1

3
μd , (15.17)

where μu,d are the quark magnetons:

μu,d =
zu,d e�

2mu,d
. (15.18)

The other JP =1/2+ baryons with two identical quarks may be described by
(15.17) with a suitable change of quark flavours. The neutron, for example,
has a magnetic moment

μn =
4
3
μd − 1

3
μu (15.19)

and analogously for the Σ+ we have

μΣ+ =
4
3
μu − 1

3
μs . (15.20)

The situation is a little different for the Λ0. As we know this hyperon
contains a u- and a d-quark whose spins are coupled to 0 and so contribute
neither to the spin nor to the magnetic moment of the baryon (Sect. 15.2).
Hence both the spin and the magnetic moment of the Λ0 are determined
solely by the s-quark:

μΛ = μs . (15.21)

To the extent that the u and d constituent quark masses can be set equal
to each other we have μu = −2μd and may then write the proton and neutron
magnetic moments as follows

μp =
3
2
μu , μn = −μu . (15.22)

We thus obtain the following prediction for their ratio

μn

μp
= −2

3
, (15.23)

which is in excellent agreement with the experimental result of −0.685.
The absolute magnetic moments can only be calculated if we can specify

the quark masses. Let us first, however, look at this problem the other way
round and use the measured value of μp to determine the quark masses. From

μp = 2.79μN = 2.79
e�

2Mp
(15.24)
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and
μp =

3
2
μu =

e�

2mu
(15.25)

we obtain
mu =

Mp

2.79
= 336 MeV/c2 , (15.26)

which is very close indeed to the mass we found in Sect. 15.3 from the study
of the baryon spectrum.

Measuring the magnetic moments. The agreement between the experi-
mental values of the hyperon magnetic moments with the predictions of the
quark model is impressive (Table 15.2). Our ability to measure the mag-
netic moments of many of the short lived hyperons (τ ≈ 10−10 s) is due to
a combination of two circumstances: hyperons produced in nucleon-nucleon
interactions are polarised and the weak interaction violates parity maximally.
In consequence the angular distributions of their decay products are strongly
dependent upon the direction of the hyperons’ spins (i.e., their polarisations).

Let us clarify these remarks by studying how the magnetic moment of the
Λ0 is experimentally measured. Note that this is the most easily determined
of the hyperon magnetic moments. The decay

Λ0 → p + π−

Table 15.2. Experimental and theoretical values of the baryon magnetic moments
[La91, PD98]. The measured values of the p, n and Λ0 moments are used to predict
those of the other baryons. The Σ0 hyperon has a very short lifetime (7.4 · 10−20 s)
and decays electromagnetically via Σ0 → Λ0 + γ. For this particle the transition
matrix element 〈Λ0|μ|Σ0〉 is given in place of its magnetic moment.

Baryon μ/μN (Experiment) Quark model: μ/μN

p +2.792 847 386 ± 0.000 000 063 (4μu − μd)/3 —

n −1.913 042 75 ± 0.000 000 45 (4μd − μu)/3 —

Λ0 −0.613 ± 0.004 μs —

Σ+ +2.458 ± 0.010 (4μu − μs)/3 +2.67

Σ0 (2μu + 2μd − μs)/3 +0.79

Σ0 → Λ0 −1.61 ± 0.08 (μd − μu)/
√

3 −1.63

Σ− −1.160 ± 0.025 (4μd − μs)/3 −1.09

Ξ0 −1.250 ± 0.014 (4μs − μu)/3 −1.43

Ξ− −0.650 7 ± 0.002 5 (4μs − μd)/3 −0.49

Ω− −2.02 ± 0.05 3μs −1.84
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MagnetProton beam

Target Precession
μΛ

pK

pΛ

pK x pΛ

B

φ

Fig. 15.6. Sketch of the measurement of the magnetic moment of the Λ0. The
hyperon is generated by the interaction of a proton coming in from the left with
a proton in the target. The spin of the Λ0 is, for reasons of parity conservation,
perpendicular to the production plane. The Λ0 then passes through a magnetic
field which is orthogonal to the particle’s spin. After traversing a distance d in the
magnetic field the spin has precessed through an angle φ.

is rather simple to identify and has the largest branching ratio (64 %). If the
Λ0 spin is, say, in the positive ẑ direction, then the proton will most likely be
emitted in the negative ẑ direction, in accord with the angular distribution

W (θ) ∝ 1 + α cos θ where α ≈ 0.64 . (15.27)

The angle θ is the angle between the spin of the Λ0 and the momentum of
the proton. The parameter α depends upon the strength of the interference
of those terms with orbital angular momentum �= 0 and �= 1 in the p-π−

system and its size must be determined by experiment.
The asymmetry in the emitted protons then fixes the Λ0 polarisation.

Highly polarised Λ0 particles may be obtained from the reaction

p + p → K+ + Λ0 + p .

As shown in Fig. 15.6, the spin of the Λ0 is perpendicular to the production
plane defined by the path of the incoming proton and that of the Λ0 itself.
This is because only this polarisation direction conserves parity, which is
conserved in the strong interaction.

If the Λ0 baryon traverses a distance d in a magnetic field B, where the
field is perpendicular to the hyperon’s spin, then its spin precesses with the
Larmor frequency

ωL =
μΛB

�
(15.28)

through the angle
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φ = ωLΔt = ωL
d

v
, (15.29)

where v is the speed of the Λ0 (this may be reconstructed by measuring the
momenta of its decay products, i.e., a proton and a pion). The most accurate
results may be obtained by reversing the magnetic field and measuring the
angle 2 · φ which is given by the difference between the directions of the Λ0

spins (after crossing the various magnetic fields). This trick neatly eliminates
most of the systematic errors. The magnetic moment is thus found to be
[PD94]

μΛ = (−0.613 ± 0.004)μN . (15.30)

If we suppose that the s-constituent quark is a Dirac particle and that its
magnetic moment obeys (15.18), then we see that this result for μΛ is con-
sistent with a strange quark mass of 510 MeV/c2.

The magnetic moments of many of the hyperons have been measured in
a similar fashion to the above. There is an additional complication for the
charged hyperons in that their deflection by the magnetic field must be taken
into account if one wants to study spin precession effects. The best results
have been obtained at Fermilab and are listed in Table 15.2. These results
are compared with quark model predictions. The results for the proton, the
neutron and the Λ0 were used to fix all the unknown parameters and so
predict the other magnetic moments. The results of the experiments agree
with the model predictions to within a few percent.

These results support our constituent quark picture in two ways: firstly
the constituent quark masses from our mass formula and those obtained from
the above analysis of the magnetic moments agree well with each other and
secondly the magnetic moments themselves are consistent with the quark
model.

It should be noted, however, that the deviations of the experimental values
from the predictions of the model show that the constituent quark magnetic
moments alone do not suffice to describe the magnetic moments of the hy-
perons exactly. Further effects, such as relativistic ones and those due to the
quark orbital angular momenta, must be taken into account.

15.5 Semileptonic Baryon Decays

The weak decays of the baryons all follow the same pattern. A quark emits
a virtual W± boson and so changes its weak isospin and turns into a lighter
quark. The W± decays into a lepton-antilepton pair or, if its energy suf-
fices, a quark-antiquark pair. In the decays into a quark-antiquark pair we
actually measure one or more mesons in the final state. These decays cannot
be exactly calculated because of the strong interaction’s complications. Mat-
ters are simpler for semileptonic decays. The rich data available to us from
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semileptonic baryon decays have made a decisive contribution to our cur-
rent understanding of the weak interaction as formulated in the generalised
Cabibbo theory.

We now want to attempt to describe the weak decays of the baryons
using our knowledge of the weak interaction from Chap. 10. The weak decays
take place essentially at the quark level, but free quarks do not exist and
experiments always see hadrons. We must therefore try to interpret hadronic
observables within the framework of the fundamental theory of the weak
interaction. We will start by considering the β-decay of the neutron, since
this has been thoroughly investigated in various experiments. It will then be
only a minor matter to extend the formalism to the semileptonic decays of
the hyperons and to nuclear β-decays.

We have seen from leptonic decays such as μ− → e− + νe + νμ that the
weak interaction violates parity conservation maximally, which must mean
that the coupling constants for the vector and axial vector terms are of the
same size. Since neutrinos are left handed and antineutrinos are right handed
the coupling constants must have opposite signs (V−A theory). The weak de-
cay of a hadron really means that a confined quark has decayed. It is therefore
essential to take the quark wave function of the hadron into account. Fur-
thermore strong interaction effects of virtual particles cannot be neglected:
although the effective electromagnetic coupling constant is for reasons of
charge conservation not altered by the cloud of sea quarks and gluons, the
weak coupling is indeed so changed. In what follows we will initially take the
internal structure of the hadrons into account and then discuss the coupling
constants.

β-decay of the neutron. The β-decay of a free neutron

n → p + e− + νe (15.31)

(maximum electron energy E0 = 782 keV, lifetime 15 minutes) is a rich source
of precise data about the low energy behaviour of the weak interaction.

To find the form of the β-spectrum and the coupling constants of neutron
β-decay we consider the decay probability. This may be calculated from the
golden rule in the usual fashion. If the electron has energy Ee, then the decay
rate is

dW (Ee) =
2π
�

|Mfi|2
d
f (E0, Ee)

dEe
dEe , (15.32)

where d
f (E0, Ee)/dEe is the density of antineutrino-electron final states
with total energy E0 and the electron having energy Ee and Mfi is the
matrix element for the β-decay.

Vector transitions. A β-decay which takes place through a vector coupling
is called a Fermi transition. The direction of the quark’s spin is unaltered in
these decays. The change of a d- into a u-quark is described by the ladder
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operator of weak isospin T+ which changes a state with T =−1/2 into one
with T =+1/2.

The matrix element for neutron β-decay has a leptonic and a quark part.
Conservation of angular momentum prevents any interference between vector
and axial vector transitions, i.e., a quark vector transition necessarily implies
a leptonic vector transition. Since we already have cV = −cA = 1 for leptons,
we do not need to worry further about their part of the matrix element.

The matrix element for Fermi decays may then be written as

|Mfi|F =
GF

V
cV |〈uud |

3∑

i=1

Ti,+| udd 〉| (15.33)

where the sum is over the three quarks. According to the definition (10.4)
the Fermi constant GF includes the propagator term and the coupling to the
leptons. The initial neutron state has the wave function |udd 〉 and the final
state is described by the quark combination |uud 〉. The wave functions of the
electron and the antineutrino can each be replaced by 1/

√
V , since we have

pR/�  1.
The u- and d-quarks in the proton and neutron wave functions are eigen-

states of strong isospin. In β-decay we need to consider the eigenstates of the
weak interaction. We therefore recall that while the ladder operators I± of
the strong force map |u〉 and |d〉 onto each other, the T± operators connect
the |u〉 and |d′〉 quark states. The overlap between |d〉 and |d′〉 is, according
to (10.18), fixed by the cosine of the Cabibbo angle. Hence

〈u|T+|d〉 = 〈u|I+|d〉 · cos θC where cos θC ≈ 0.98 . (15.34)

The vector component of the matrix element is then

Mfi =
GF

V
cos θC · cV 〈uud |

3∑

i=1

Ii,+ |udd 〉 =
GF

V
cos θC · cV · 1 . (15.35)

Here we have employed the fact that the sum 〈uud|
∑

i Ii,+|udd〉 must be
unity since the operator

∑
i Ii,+ applied to the quark wave function of the

neutron just gives the quark wave function of the proton. This follows from
isospin conservation in the strong interaction and may be straightforwardly
verified with the help of (15.5) and (15.6). We thus see that the Fermi matrix
element is independent of the internal structure of the nucleon.

Axial transitions. Those β-decays that take place as a result of an axial
vector coupling are called Gamow-Teller transitions. In such cases the direc-
tion of the fermion spin flips over. The matrix element depends upon the
overlap of the spin densities of the particles carrying the weak charge in the
initial and final states. The transition operator is then cA T+σ.

The universality of the weak interaction means that this result should also
hold for free point quarks. Since quarks are always trapped inside hadrons, we
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need to consider the internal structure of the nucleon if we want to calculate
such matrix elements. From the constituent quark model we have

|Mfi|GT =
GF

V
cA |〈uud |

3∑

i=1

Ti,+σ| udd 〉| . (15.36)

Since the squares of the expectation values of the components of σ are
equal to each other, 〈

∑
i σi,x〉2 = 〈

∑
i σi,y〉2 = 〈

∑
i σi,z〉2, it is sufficient to

calculate the expectation value of σz = 〈uud |
∑

i Ii,+σi,z|udd 〉. One finds
from (15.5), (15.6) and some tedious arithmetic that

〈uud |
∑

i

Ii,+σi,z|udd 〉 =
5
3
. (15.37)

The total matrix element. In experiments we measure the properties of
the nucleon, such as its spin, and not those of the quarks. To compare theory
with experiment we must therefore reformulate the matrix element so that
all operators act upon the nucleon wave function. The square of the neutron
decay matrix element may be written as

|Mfi|2 =
g2V
V 2

|〈p |I+|n 〉|2 +
g2A
V 2

|〈p |I+ σ|n 〉|2 . (15.38)

We stress that I+ and σ now act upon the wave function of the nucleon. The
quantities gV and gA are those which are measured in neutron β-decay and
describe the absolute strengths of the vector and axial vector contributions.
They contain the product of the weak charges at the leptonic and hadronic
vertices.

Since the proton and the neutron form an isospin doublet, (15.38) may
be written as

|Mfi|2 = (g2V + 3g2A)/V 2 . (15.39)

We note that the factor of 3 in the axial vector part is due to the expectation
value of the spin operator σ2 = σ2

x + σ2
y + σ2

z .
In the constituent quark model gV and gA are related to the quark de-

pendent coupling constants cV and cA as follows:

gV = GF cos θC cV , (15.40)

gA ≈ GF cos θC
5
3
cA . (15.41)

The Fermi matrix element (15.35) is independent of the internal structure
of the neutron and (15.40) is as exact as the isospin symmetry of the proton
and the neutron. The axial vector coupling, on the other hand, does depend
upon the structure of the nucleon. In the constituent quark model it is given
by (15.41). It is important to understand that the factor of 5/3 is merely an
estimate, since the constituent quark model only gives us an approximation
of the nucleon wave function.
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The neutron lifetime. The lifetime is given by the inverse of the total
decay probability per unit time:

1
τ

=
∫ E0

mec2

dW
dEe

dEe =
∫ E0

mec2

2π
�

|Mfi|2
d
f (E0, Ee)

dEe
dEe . (15.42)

Assuming that the matrix element is independent of the energy, we can pull
it outside the integral. The state density 
f (E0, Ee) may, in analogy to (4.18)
and (5.21), be written as

d
f (E0, Ee) =
(4π)2

(2π�)6
p2e

dpe
dEe

p2ν
dpν

dE0
V 2 dEe , (15.43)

where we have taken into account that we here have an electron and a neu-
trino and hence a 2-particle state density and V is the volume in which the
wave functions of the electron and of the neutrino are normalised. Since this
normalisation enters the matrix element (15.39) via a 1/V 2 factor, the decay
probability is independent of V .

In (15.42) we only integrate over the electron spectrum and so we need
the density of states for a total energy E0 with a fixed electron energy Ee.
Neglecting recoil effects we have E0 = Ee +Eν and hence dE0 = dEν . Using
the relativistic energy-momentum relation E2 = p2c2 +m2c4 we thus find

p2edpe =
1
c2
peEe dEe =

1
c3
Ee

√
E2

e −m2
ec

4 dEe (15.44)

and an analogous relation for the neutrino. Assuming that the neutrino is
massless we obtain

d
f (E0, Ee) = (4π)2 V 2 Ee

√
E2

e −m2
ec

4 · (E0 − Ee)2

(2π�c)6
dEe . (15.45)

To find the lifetime τ we now need to carry out the integral (15.42). It
is usual to normalise the energies in terms of the electron rest mass and so
define

f(E0) =
∫ E0

1

Ee

√
E2
e − 1 · (E0 − Ee)2 dEe where E = E/mec

2. (15.46)

Together with (15.39) this leads to

1
τ

=
m5

ec
4

2π3�7
· (g2V + 3g2A) · f(E0) . (15.47)

For (E0 � mec
2) we have

f(E0) ≈
E5
0

30
(15.48)
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and so
1
τ
≈ 1

�7c6
· (g2V + 3g2A) · E

5
0

60π3
. (15.49)

This decrease of the lifetime as the fifth power of E0 is called Sargent’s rule.
In neutron decays E0 is roughly comparable to mec

2 and the approxima-
tion (15.48) is not applicable. The decay probability is roughly half the size
of (15.49):

1
τn

≈ 1
�7c6

· (g2V + 3g2A) · E
5
0

60π3
· 0.47 . (15.50)

Experimental results. The neutron lifetime has been measured very pre-
cisely in recent years. The storage of ultra cold neutrons has been a valuable
tool in these experiments [Ma89, Go94a]. Extremely slow neutrons can be
stored between solid walls which represent a potential barrier. The neutrons
are totally reflected since the refraction index in solid matter is smaller than
that in air [Go79]. With such storage cells the lifetime of the neutron may
be determined by measuring the number of neutrons in the cell as a function
of time. To do this one opens the storage cell for a specific time to a cold
neutron beam of a known, constant intensity. The cell is then closed and left
undisturbed until after a certain time it is opened again and the remaining
neutrons are counted with a neutron detector. The experiment is repeated
for various storage times. The exponential decay in the number of neutrons
in the cell (together with knowledge of the leakage rate from the cell) gives
us the neutron lifetime. The average of the most recent measurements of the
neutron lifetime is [PD98]

τn = 886.7 ± 1.9 s . (15.51)

To individually determine gA and gV we need to measure a second quan-
tity. The decay asymmetry of polarised neutrons is a good candidate here.
This comes from the parity violating properties of the weak interaction: the
axial vector part emits electrons anisotropically while the vector contribution
is spherically symmetric.2 The number of electrons that are emitted in the
direction of the neutron spin N↑↑ is smaller than the number N↑↓ emitted in
the opposite direction. The asymmetry A is defined by

N↑↑ −N↑↓

N↑↑ +N↑↓ = β ·A where β =
v

c
. (15.52)

This asymmetry is connected to

λ =
gA
gV

(15.53)

2 The discovery of parity violation in the weak interaction was through the
anisotropic emission of electrons in the β-decay of atomic nuclei [Wu57].
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by

A = −2
λ(λ+ 1)
1 + 3λ2

. (15.54)

The asymmetry experiments are also best performed with ultra low energy
neutrons. An electron spectrometer with an extremely high spatial resolution
is needed. Such measurements yield [PD98]

A = −0.1162 ± 0.0013 . (15.55)

Combining this information we have

λ = −1.267 ± 0.004 ,
gV/(�c)3 = +1.153 · 10−5 GeV−2 ,

gA/(�c)3 = −1.454 · 10−5 GeV−2 . (15.56)

A comparison with (15.40) yields very exactly cV =1, which is the value
we would expect for a point-like quark or lepton. The vector part of the
interaction is conserved in weak baryon decays. This is known as conservation
of vector current (CVC) and it is believed that this conservation is exact. It
is considered to be as important as the conservation of electric charge in
electromagnetism.

The axial vector term is on the other hand not that of a point-like Dirac
particle. Rather than λ = −5/3 experiment yields λ ≈ −5/4. The strong
force alters the spin dependent part of the weak decay and the axial vector
current is only partially conserved (PCAC = partially conserved axial vector
current).

Semileptonic hyperon decays. The semileptonic decays of the hyperons
can be calculated in a similar way to that of the neutron. Since the decay
energies E0 are typically two orders of magnitude larger than in the neutron
decay, Sargent’s rule (15.49) predicts that the hyperon lifetimes should be at
least a factor of 1010 shorter. At the quark level these decays are all due to
the decay s → u + e− + νe.

The two independent measurements to determine the semileptonic de-
cay probabilities of the hyperons are their lifetimes τ and the branching
ratio Vsemil. of the semileptonic channels. From

1
τ
∝ |Mfi|2 and Vsemil. ≡

|Mfi|2semil.

|Mfi|2

we have the relationship

Vsemil.

τ
∝ |Mfi|2semil. . (15.57)

The lifetime may most easily be measured in production experiments.
High energy proton or hyperon (e.g., Σ−) beams with an energy of a few
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hundred GeV are fired at a fixed target and one detects the hyperons which
are produced. One then calculates the average decay length of the secondary
hyperons, i.e., the average distance between where they are produced (the
target) and where they decay. This is done by measuring the tracks of the
decay products with detectors which have a good spatial resolution and recon-
structing the position where the hyperon decayed. The number of hyperons
decreases exponentially with time and this is reflected in an exponential de-
crease in the number N of decay positions a distance l away from the target:

N = N0 e−t/τ = N0 e−l/L . (15.58)

The method of invariant masses must, of course, be used to identify which
sort of hyperon has decayed. The average decay length L is then related to
the lifetime τ as follows

L = γvτ , (15.59)

where v is the velocity of the hyperon. With high beam energies the secondary
hyperons can have time dilation factors γ = E/mc2 of the order of 100. Since
the hyperons typically have a lifetime of around 10−10 s the decay length will
typically be a few metres – which may be measured to a good accuracy.

The measurement of the branching ratios is much more complicated. This
is because the vast majority of decays are into hadrons (which may therefore
be used to measure the decay length). The semileptonic decays are only
about one thousandth of the total. This means that those few leptons must
be detected with a very high efficiency and that background effects must be
rigorously analysed.

The experiments are in fact sufficiently precise to put the Cabibbo theory
to the test. The method is similar to that which we used in the case of the
β-decay of the neutron. Using the relevant matrix element and phase space
factors one calculates the decay probability of the decay under considera-
tion. The calculation, which still contains cV and cA, is then compared with
experiment.

Consider the strangeness-changing decay Ξ− → Λ0 + e− + νe. The matrix
element for the Fermi decay is

|Mfi|F =
GF

V
|〈uds |

3∑

i=1

Ti,+| dss 〉| , (15.60)

where we have assumed that the coupling constant cV = 1 is unchanged. Ap-
plying the operator T+ to the flavour eigenstate |s〉 yields a linear combination
of |u〉 and |c〉. Just as was the case for the β-decay of the neutron the ma-
trix element thus contains a Cabibbo factor, here sin θC. The Gamow-Teller
matrix element is obtained from

|Mfi|GT =
gA
gV

GF

V
|〈uds |

3∑

i=1

Ti,+σi| dss 〉| . (15.61)
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Of course the evaluation of the σ operator depends upon the wave functions
of the baryons involved in the decay.

The analysis of the data confirms the assumption that the ratio λ = gA/gV
has the same value in both hyperon and neutron decays. The axial current
is hence modified in the same way for all three light quark flavours.

15.6 How Good is the Constituent Quark Concept?

We introduced the concept of constituent quarks so as to describe the baryon
mass spectrum as simply as possible. We thus viewed constituent quarks as
the building blocks from which the hadrons can be constructed. This means,
however, that we should be able to derive all the hadronic quantum numbers
from these effective constituents. Furthermore we have silently assumed that
we are entitled to treat constituent quarks as elementary particles, whose
magnetic moments, just like the electrons’, obey a Dirac relation (15.13).
That these ideas work has been seen in the chapters treating the meson
and baryon masses and the magnetic moments. Various approaches led us to
constituent quark masses which were in good agreement with each other and
furthermore the magnetic moments of the model were generally in very good
agreement with experiment.

Constituent quarks are not, however, fundamental, elementary particles
as we understand the term. This role is reserved for the “naked” valence
quarks which are surrounded by a cloud of virtual gluons and quark-antiquark
pairs. It is not at all obvious why constituent quarks may be treated as
though they were elementary. Indeed we have seen the limitations of this
approach: in all those phenomena where spin plays a part the structure of
the constituent quark makes itself to some extent visible, for example in
the magnetic moments of the hyperons with 2 or 3 s-quarks and also in the
non-conserved axial vector current of the weak interaction. The picture of
hadrons as being composed of (Dirac particle) constituent quarks is just not
up to describing such matters or indeed any process with high momentum
transfer.
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Problems
1. Particle production and identification

A liquid hydrogen target is bombarded with a |p| =12 GeV/c proton beam.
The momenta of the reaction products are measured in wire chambers inside a
magnetic field. In one event six charged particle tracks are seen. Two of them
go back to the interaction vertex. They belong to positively charged particles.
The other tracks come from two pairs of oppositely charged particles. Each of
these pairs appears “out of thin air” a few centimetres away from the interaction
point. Evidently two electrically neutral, and hence unobservable, particles were
created which later both decayed into a pair of charged particles.
a) Make a rough sketch of the reaction (the tracks).
b) Use Tables 14.2, 14.3 and 15.1 as well as [PD94] to discuss which mesons

and baryons have lifetimes such that they could be responsible for the two
observed decays. How many decay channels into two charged particles are
there?

c) The measured momenta of the decay pairs were:

1) |p+| = 0.68 GeV/c, |p−| = 0.27 GeV/c, <) (p+, p−) = 11◦;

2) |p+| = 0.25 GeV/c, |p−| = 2.16 GeV/c, <) (p+, p−) = 16◦.
The relative errors of these measurements are about 5%. Use the method of
invariant masses (15.1) to see which of your hypothesis from b) are compat-
ible with these numbers.

d) Using these results and considering all applicable conservation laws produce
a scheme for all the particles produced in the reaction. Is there a unique
solution?

2. Baryon masses
Calculate expressions analogous to (15.11) for the mass shifts of the Σ and Σ∗
baryons due to the spin-spin interaction. What value do you obtain for αs|ψ(0)|2
if you use the constituent quark masses from Sec. 15.3?

3. Isospin coupling
The Λ hyperon decays almost solely into Λ0→p + π− and Λ0→n + π0. Apply
the rules for coupling angular momenta to isospin to estimate the ratio of the
two decay probabilities.

4. Muon capture in nuclei
Negative muons are slowed down in a carbon target and then trapped in atomic
1s states. Their lifetime is then 2.02 μs which is less than that of the free muon
(2.097 μs). Show that the difference in the lifetimes is due to the capture reaction
12C+μ− → 12B + νμ. The mass difference between the 12B and 12C atoms is
13.37 MeV/c2 and the lifetime of 12B is 20.2 ms. 12B has, in the ground state, the
quantum numbers JP = 1+ and τ = 20.2 ms. The rest mass of the electron and
the nuclear charge may be neglected in the calculation of the matrix element.

5. Quark mixing
The branching ratios for the semileptonic decays Σ− → n + e− + νe and Σ− →
Λ0 + e− + νe are 1.02 · 10−3 and 5.7 · 10−5 respectively – a difference of more
than an order of magnitude. Why is this? The decay Σ+ → n + e+ + νe has not
yet been observed (upper bound: 5 · 10−6). How would you explain this?



Problems 227

6. Parity

a) The intrinsic parity of a baryon cannot be determined in an experiment; it
is only possible to compare the parity of one baryon with that of another.
Why is this?

b) It is conventional to ascribe a positive parity to the nucleon. What does this
say about the deuteron’s parity (see Sec. 16.2) and the intrinsic parities of
the u- and d-quarks?

c) If one bombards liquid deuterium with negative pions, the latter are slowed
down and may be captured into atomic orbits. How can one show that they
cascade down into the 1s shell (K shell)?

d) A pionic deuterium atom in the ground state decays through the strong in-
teraction via d + π− → n + n. In which 2S+1LJ state may the two neutron
system be? Note that the two neutrons are identical fermions and that an-
gular momentum is conserved.

e) What parity from this for the pion? What parity would one expect from the
quark model (see Chap. 14)?

f) Would it be inconsistent to assign a positive parity to the proton and a
negative one to the neutron? What would then be the parities of the quarks
and of the pion? Which convention is preferable? What are the parities of
the Λ and the Λc according to the quark model?
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Unfortunately, nuclear physics has not profited as
much from analogy as has atomic physics. The
reason seems to be that the nucleus is the domain
of new and unfamiliar forces, for which men have
not yet developed an intuitive feeling.

V. L. Telegdi [Te62]

The enormous richness of complex structures that we see all around us (mole-
cules, crystals, amorphous materials) is due to chemical interactions. The
short distance forces through which electrically neutral atoms interact can
and do produce large scale structures.

The interatomic potential can generally be determined from spectroscopic
data about molecular excited states and from measuring the binding energies
with which atoms are tied together in chemical substances. These potentials
can be quantitatively explained in non-relativistic quantum mechanics. We
thus nowadays have a consistent picture of chemical binding based upon
atomic structure.

The nuclear force is responsible for holding the nucleus together. This is
an interaction between colourless nucleons and its range is of the same order
of magnitude as the nucleon diameter. The obvious analogy to the atomic
force is, however, limited. In contrast to the situation in atomic physics, it is
not possible to obtain detailed information about the nuclear force by study-
ing the structure of the nucleus. The nucleons in the nucleus are in a state
that may be described as a degenerate Fermi gas. To a first approximation
the nucleus may be viewed as a collection of nucleons in a potential well. The
behaviour of the individual nucleons is thus more or less independent of the
exact character of the nucleon-nucleon force. It is therefore not possible to
extract the nucleon-nucleon potential directly from the properties of the nu-
cleus. The potential must rather be obtained by analysing two-body systems
such as nucleon-nucleon scattering and the proton-neutron bound state, i.e.,
the deuteron.

There are also considerably greater theoretical difficulties in elucidating
the connection between the nuclear forces and the structure of the nucleon
than for the atomic case. This is primarily a consequence of the strong cou-
pling constant αs being two orders of magnitude larger than α, its electro-
magnetic equivalent. We will therefore content ourselves with an essentially
qualitative explanation of the nuclear force.
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16.1 Nucleon–Nucleon Scattering

Nucleon-nucleon scattering at low energies, below the pion production thresh-
old, is purely elastic. At such energies the scattering may be described by
non-relativistic quantum mechanics. The nucleons are then understood as
point-like structureless objects that nonetheless possess spin and isospin. The
physics of the interaction can then be understood in terms of a potential. It
is found that the nuclear force depends upon the total spin and isospin of the
two nucleons. A thorough understanding therefore requires experiments with
polarised beams and targets, so that the spins of the particles involved in the
reaction can be specified, and both protons and neutrons must be employed.

If we consider nucleon-nucleon scattering and perform measurements for
both parallel and antiparallel spins perpendicular to the scattering plane,
then we can single out the spin triplet and singlet parts of the interaction.
If the nucleon spins are parallel, then the total spin must be 1, while for
opposite spins there are equally large (total) spin 0 and 1 components.

The algebra of angular momentum can also be applied to isospin. In
proton-proton scattering we always have a state with isospin 1 (an isospin
triplet) since the proton has I3 = +1/2. In proton-neutron scattering there
are both isospin singlet and triplet contributions.

Scattering phases. Consider a nucleon coming in “from infinity” with ki-
netic energy E and momentum p which scatters off the potential of another
nucleon. The incoming nucleon may be described by a plane wave and the
outgoing nucleon as a spherical wave. The cross section depends upon the
phase shift between these two waves.

For states with well defined spin and isospin the cross section of nucleon-
nucleon scattering into a solid angle element dΩ is given by the scattering
amplitude f(θ) of the reaction

dσ
dΩ

= |f(θ)|2 . (16.1)

For scattering off a short ranged potential a partial wave decomposition is
used to describe the scattering amplitude. The scattered waves are expanded
in terms with fixed angular momentum �. In the case of elastic scattering the
following relation holds at large distances r from the centre of the scattering:

f(θ) =
1
k

∞∑

�=0

(2�+ 1) eiδ� sin δ� P�(cos θ) , (16.2)

where

k =
1
λ–

=
|p|
�

=
√

2ME
�

(16.3)

is the wave number of the scattered nucleon, δ� a phase shift angle and P�, the
angular momentum eigenfunction, an �-th order Legendre polynomial. The
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phase shifts δ� describe the phase difference between the scattered and un-
scattered waves. They contain the information about the shape and strength
of the potential and the energy dependence of the cross section. The fact that
δ� appears not only as a phase factor but also in the amplitude (sin δ�) follows
from the conservation of the particle current in elastic scattering. This is also
known as unitarity. The partial wave decomposition is especially convenient
at low energies since only a few terms enter the expansion. This is because
for a potential with range a we have

� ≤ |p| · a
�

. (16.4)

The phase shift δ0 of the partial waves with � = 0 (i.e., s waves) is de-
cisive for nuclear binding. From (16.4) we see that the s waves dominate
proton-proton scattering (potential range 2 fm) for relative momenta less
than 100 MeV/c. The Legendre polynomial P0 is just 1, i.e., independent of
θ. The phase shifts δ0 as measured in nucleon-nucleon scattering are sepa-
rately plotted for spin triplet and singlet states against the momentum in
the centre of mass frame in Fig. 16.1. For momenta larger than 400 MeV/c
δ0 is negative, below this it is positive. We learn from this that the nuclear
force has a repulsive character at short distances and an attractive nature at
larger separations. This may be simply seen as follows.

Consider a, by definition, spherically symmetric s wave ψ(x). We may
define a new radial function u(r) by u(r)=ψ(r)·r which obeys the Schrödinger
equation
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Fig. 16.1. The phase shift δ0 as determined from experiment both for the spin
triplet-isospin singlet 3S1 and for the spin singlet-isospin triplet 1S0 systems plotted
against the relative momenta of the nucleons. The rapid variation of the phases at
small momenta is not plotted since the scale of the diagram is too small.



232 16 The Nuclear Force
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Fig. 16.2. Sketch of the scattering phase for a repulsive (left) and an attractive
(right) potential. The dashed curves denote unscattered waves, the continuous ones
the scattered waves.

d2u(r)
dr2

+
2m(E − V )

�2
u(r) = 0 . (16.5)

If we now solve this equation for a repulsive rectangular potential V with
radius b and V → ∞ (Fig. 16.2), we find

δ0 = −kb . (16.6)

The scattering phase is negative and proportional to the range of the poten-
tial. A negative scattering phase means that the scattered wave lags behind
the unscattered one.

For an attractive potential the scattered wave runs ahead of the unscat-
tered one and δ0 is positive. The size of the phase shift is the difference
between the phase of the wave scattered off the edge of the potential a and
that of the unscattered wave:

δ0 = arctan

(√
E

E + |V | tan

√
2mc2(E + |V |) · a

�c

)

−
√

2mc2E · a
�c

. (16.7)

The phase shift δ0 is then positive and decreases at higher momenta. If
we superimpose the phase shifts associated with a short ranged repulsive
potential and a longer ranged attractive one we obtain Fig. 16.3, where the
effective phase shift changes sign just as the observed one does.

Repulsion

Sum

Momentum

Attractionδ0
Fig. 16.3. Superposition of negative
and positive scattering phases δ0 plotted
against the relative momenta of the scat-
tered particles. The resulting effective δ0

is generated by a short distance repulsive
and a longer range attractive nucleon-
nucleon potential.



16.1 Nucleon–Nucleon Scattering 233

100

50

0

-50

-100

1 2 3

V
(r

) 
[M

eV
]

r  [fm]

Fig. 16.4. Sketch of the radial depen-
dence of the nucleon-nucleon potential
for � = 0. Note that the spin and isospin
dependence of the potential is not shown.

The relationship between the scattering phase δ0 and the scattering poten-
tial V is contained, in principle, in (16.6) and (16.7) since the wave number k
in the region of the potential depends both upon the latter’s size and shape
and upon the initial energy E of the projectile. A complete scattering phase
analysis leads to the nuclear potential shown in Fig. 16.4 which has – as
remarked above – a short ranged repulsive and a longer ranged attractive
nature. Since the repulsive part of the potential increases rapidly at small r
it is known as the hard core.

The nucleon–nucleon potential. We may obtain a general form of the
nucleon-nucleon potential from a consideration of the relevant dynamical
quantities. We will, however, neglect the internal structure of the nucleons,
which means that this potential will only be valid for nucleon-nucleon bound
states and low energy nucleon-nucleon scattering.

The quantities which determine the interaction are the separation of the
nucleons x, their relative momenta p, the total orbital angular momentum L
and the relative orientations of the spins of the two nucleons, s1 and s2. The
potential is a scalar and must at the very least be invariant under translations
and rotations. Furthermore it should be symmetric under exchange of the two
nucleons. These preconditions necessarily follow from various properties, such
as parity conservation, of the underlying theory of the strong force and they
limit the scalars which may appear in the potential. At the end of the day
the potential, for fixed isospin, has the form [Pr63]:

V (r) = V0(r)
+Vss(r) s1 · s2/�

2

+VT(r)
(
3(s1 · x)(s2 · x)/r2 − s1s2

)
/�2

+VLS(r) (s1 + s2) · L/�2

+VLs(r) (s1 · L)(s2 · L)/�4

+Vps(r) (s2 · p)(s1 · p)/(�2m2c2) . (16.8)
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V0 is a standard central potential. The second term describes a pure spin-spin
interaction, while the third term is called the tensor potential and describes
a non-central force. These two terms have the same spin dependence as the
interaction between two magnetic dipoles in electromagnetism. The tensor
term is particularly interesting, since it alone can mix orbital angular mo-
mentum states. The fourth term originates from a spin-orbit force, which is
generated by the strong interaction (the analogous force in atomic physics
is of magnetic origin). The final two terms in (16.8) are included on formal
grounds, since symmetry arguments do not exclude them. They are, however,
both quadratic in momentum and thus mostly negligible in comparison to the
LS-term.

The significance of this ansatz for the potential is not that the various
terms can be merely formally written down, but rather that, as we will see
in Sect. 16.3, the spin and isospin dependence of the nuclear force can be
explained in meson exchange models. Attempts to fit the potential terms
to the experimental data have not fixed it exactly, but a general agreement
exists for the first four terms. It should be also noted that many body forces
need to be taken into account for conglomerations of nucleons.

The central potential for the S = 0 case is applicable to the low energy
proton-proton and neutron-neutron interactions. The attractive part is, how-
ever, not strong enough to create a bound state. For S = 1 on the other hand
this potential together with the tensor force and the spin-spin interaction is
strong enough to present us with a bound state, the deuteron.

16.2 The Deuteron

The deuteron is the simplest of all the nucleon bound states i.e., the atomic
nuclei. It is therefore particularly suitable for studying the nucleon-nucleon
interaction. Experiments have yielded the following data about the deuteron
ground state:

Binding energy B = 2.225 MeV
Spin and parity JP = 1+

Isospin I = 0
Magnetic moment μ = 0.857 μN

Elec. quadrupole moment Q = 0.282 e·fm2 .

The proton-neutron system is mostly made up of an �=0 state. If it were a
pure �=0 state then the wave function would be spherically symmetric, the
quadrupole moment would vanish and the magnetic dipole moment would be
just the sum of the proton and neutron magnetic moments (supposing that
the nucleonic magnetic moments are not altered by the binding interaction).
This prediction for the deuteron magnetic moment

μp + μn = 2.792μN − 1.913μN = 0.879μN (16.9)
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differs slightly from the measured value of 0.857μN. Both the magnetic dipole
moment and the electric quadrupole moment can be explained by the admix-
ture of a state with the same JP quantum numbers

|ψd〉 = 0.98 · | 3S1〉 + 0.20 · | 3D1〉 . (16.10)

In other words there is a 4 % chance of finding the deuteron in a 3D1 state.
This admixture can be explained from the tensor components of the nucleon-
nucleon interaction.

We now want to calculate the nucleon wave function inside a deuteron.
Since the system is more or less in an �=0 state, the wave function will be
spherically symmetric. We will need the depth V of the potential well (aver-
aged over the attractive and repulsive parts) and its range, a. The binding
energy of the deuteron alone gives us one parameter – the “volume” of the
potential well, i.e., V a2. The solutions of the Schrödinger equation (16.5) are

if r<a : uI(r) = A sin kr where k =
√

2m(E − V )/�, (V < 0),

if r>a : uII(r) = Ce−κr where κ =
√
−2mE/�, (E < 0),

(16.11)

and m ≈Mp/2 is the reduced mass of the proton-neutron system.
Continuity of u(r) and du(r)/dr at the edge of the well, i.e., r = a, implies

that [Sc95]
k cot ka = −κ ak ≈ π

2
(16.12)

and

V a2 ≈ Ba2 +
π2

8
(�c)2

mc2
≈ 100 MeV fm2 . (16.13)

Current values for the range of the nuclear force, and hence the effective
extension of the potential a ≈ 1.2 · · · 1.4 fm, imply that the depth of the

a

r

u 2 ( r )

Fig. 16.5. Radial probability distribu-
tion u2(r) = r2|ψ|2 of the nucleons
in deuterium for an attractive poten-
tial with range a (dashed curve) and for
the range a → 0 with a fixed volume
V a2 for the potential well (continuous
curve).
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Fig. 16.6. The radial probability distri-
bution u2(r) of the hydrogen atoms in
a hydrogen molecule (top) [He50] and
of nucleons in a deuteron (bottom) in
units of the relevant hard cores (from
[Bo69]). The covalent bond strongly lo-
calises the H atoms, since the binding
energy is comparable to the depth of
the potential. The weak nuclear bond,
since the potential energy is compara-
ble in size to the kinetic energy, means
that the nucleons are delocalised.

potential is V ≈ 50 MeV. This is much greater than the deuteron binding en-
ergy B (just 2.25 MeV). The tail of the wave function, which is characterised
by 1/κ ≈ 4.3 fm, is large compared to the range of the nuclear force.

The radial probability distribution of the nucleons is sketched in Fig. 16.5
for two values of a but keeping the volume of the potential well V a2 constant.
Since deuterium is a very weakly bound system the two calculations differ
only slightly, especially at larger separations.

A more detailed calculation which takes the repulsive part of the potential
into account only changes the above wave function at separations smaller
than 1 fm (cf. Fig. 16.5). In Fig. 16.6 the probability distribution of nucleons
in deuterium and of hydrogen atoms in a hydrogen molecule are given for
comparison. The separations are in both cases plotted in units of the spatial
extension of the relevant hard core. The hard core sizes are about 0.4·10−10 m
for the hydrogen molecule and roughly 0.5 · 10−15 m for the deuteron. The



16.3 Nature of the Nuclear Force 237

atoms in the molecule are well localised – the uncertainty in their separation
ΔR is only about 10 % of the separation (cf. Fig. 16.6). The nuclear binding
in deuterium is relatively “weak” and the bound state is much more spread
out. This means that the average kinetic energy is comparable to the average
depth of the potential and so the binding energy, which is just the sum of the
kinetic and potential energies, must be very small.

The binding energy of the nucleons in larger nuclei are somewhat greater
than that in deuterium and the density is accordingly larger. Qualitatively
we still have the same situation: a relatively weak effective force is just strong
enough to hold nuclei together. The properties of the nuclei bear witness to
this fact: it is a precondition both for the description of the nucleus as a
degenerate Fermi gas and for the great mobility of the nucleons in nuclear
matter.

16.3 Nature of the Nuclear Force

We now turn to the task of understanding the strength and the form of the
nuclear force from the structure of the nucleons and the strong interaction
of the quarks inside the nucleons. In the following discussion we will employ
qualitative arguments. The structure of the nucleon will be approached via
the nonrelativistic quark model where the nucleons are built out of three
constituent quarks. The nuclear force is primarily transmitted by quark-
antiquark pairs, which we can only introduce ad hoc through plausibility
arguments. A consistent theory of the nuclear force, based upon the interac-
tion of quarks and gluons, does not yet exist.

Short distance repulsion. Let us begin with the short distance repulsive
part of the nuclear force and try to construct some analogies to better un-
derstood phenomena. That atoms repel each other at short distances is a
consequence of the Pauli principle. The electron clouds of both atoms occupy
the lowest possible energy levels and if the clouds overlap then some electrons
must be elevated into excited states using the kinetic energy of the colliding
atoms. Hence we observe a repulsive force at short distances.

The quarks in a system of two nucleons also obey the Pauli principle,
i.e., the 6 quark wave function must be totally antisymmetric. It is, however,
possible to put as many as 12 quarks into the lowest � = 0 state without
violating the Pauli principle, since the quarks come in three colours and have
two possible spin (↑, ↓) and isospin (u-quark, d-quark) directions. The spin-
isospin part of the complete wave function must be symmetric since the colour
part is antisymmetric and, for � = 0, the spatial part is symmetric. We thus
see that the Pauli principle does not limit the occupation of the lowest quark
energy levels in the spatial wave function, and so the fundamental reason for
the repulsive core must be sought elsewhere.
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The real reason is the spin-spin interaction between the quarks [Fa88]. We
have already seen how this makes itself noticeable in the baryon spectrum: the
Δ baryon, where the three quark spins are parallel to one another, is about
350 MeV/c2 heavier than the nucleon. The potential energy then increases
if two nucleons overlap and all 6 quarks remain in the � = 0 state since
the number of quark pairs with parallel spins is greater than for separated
nucleons. For each and every quark pair with parallel spins the potential
energy increases by half the Δ-nucleon energy difference (15.11).

Of course the nucleon-nucleon system tries to minimise its “chromomag-
netic” energy by maximising the number of antiparallel quark spin pairs. But
this is incompatible with remaining in an �= 0 state since the spin-flavour
part of the wave function must be completely symmetric. The colourmag-
netic energy can be reduced if at least two quarks are put into the �=1 state.
The necessary excitation energy is comparable to the decrease in the chromo-
magnetic energy, so the total energy will in any case increase if the nucleons
strongly overlap. Hence the effective repulsion at short distances is in equal
parts a consequence of an increase in the chromomagnetic and the excitation
energies (Fig. 16.7). If the nucleons approach each other very closely (r = 0)
one finds in a non-adiabatic approximation that there is an 8/9 probability of
two of the quarks being in a p state [Fa82, St88]. This configuration expresses
itself in the relative wave function of the nucleons through a node at 0.4 fm.
This together with the chromomagnetic energy causes a strong, short range
repulsion. The nuclear force may be described by a nucleon-nucleon potential
which rises sharply at separations less than 0.8 fm.

Attraction. Let us now turn to the attractive part of the nuclear force.
Again we will pursue analogies from atomic physics. As we know the bonds
between atoms are connected to a change in their internal structure and we
expect something similar from the nucleons bound in the nucleus. Indeed a
change in the quark structure of bound nucleons compared to that of their
free brethren has been observed in deep inelastic scattering off nuclei (EMC
effect, see Sect. 7.4).

a

r = o

+ b

Fig. 16.7. a,b. The quark state for overlapping nucleons. This is composed of (a) a
configuration with 6 quarks in the �=0 state and (b) a configuration with 2 quarks
in the �=1 state. In a non-adiabatic approximation it is found that the state (b)
dominates at separation r = 0 (probability 8/9) [Fa82, St88]. For larger distances
this state becomes less important and disappears as r → ∞.
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Diquark Quark Diquark

Nucleon Nucleon

Fig. 16.8. Quark configurations in a covalent bond picture. At large separations,
when the nucleons just overlap, we may understand them as each being diquark-
quark systems.

It is clear upon a moments reflection that the nuclear force is not going
to be well described by an ionic bond: the confining forces are so strong that
it is not possible to lend a quark from one nucleon to another.

A Van der Waals force, where the atoms polarise each other and then stick
to each other via the resulting dipole-dipole interaction can also not serve us
as a paradigm. A Van der Waals force transmitted by the exchange of two
gluons (in analogy to two photon exchange in the atomic case) would be too
weak to explain the nuclear force at distances where the nucleons overlap and
confinement does not forbid gluon exchange. At greater separations gluons
cannot be exchanged because of confinement. Although colour neutral gluonic
states (glueballs) could still be exchanged, none which are light enough have
ever been experimentally observed.

The only analogy left to us to explain the nuclear force is a covalent bond,
such as that which is, e.g., responsible for holding the H2 molecule together.
Here the electrons of the two H atoms are continually swapped around and
can be ascribed to both atoms. The attractive part of the nuclear force is
strongest at distances of around 1 fm and indeed reminds us of the atomic
covalent bond. To simplify what follows, let us assume that the nucleon is
made up of a two quark system (diquark) and a quark (see Fig. 16.8). Such a
description has proven to be very successful in describing many phenomena.
The most energetically favourable configuration is that where a u- and a d-
quark combine to form a diquark with spin 0 and isospin 0. The alternative
spin 1 and isospin 1 diquark is not favoured. The covalent bond is then
expressed by the exchange of the “single” quarks, as sketched in Fig. 16.9.
To push home the analogy we also show the equivalent covalent binding of
the hydrogen molecule.

Since the nuclear attraction is strongest at distances of the order of 1 fm
we do not need to worry about confinement effects. The covalent bond con-
tribution to this force can be worked out analogously to the molecular case.
However, the depth of the potential that is found in this way is only about one
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Fig. 16.9. Symbolic representation of the covalent bonds in a hydrogen molecule
(left) and in a two nucleon system (right). The time axis runs vertically upwards.
The electron exchange of the hydrogen molecule is replaced by quark exchange in
the nucleonic system.

third of the experimental value [Ro94]. In fact quark exchange is less effective
than its atomic counterpart of electron exchange. This is partly because to
be exchanged the quarks must have the same colour, and there is only a 1/3
probability of this. The contribution of direct quark exchange sinks still fur-
ther if one takes the part of the nucleon wave function into account where the
diquarks have spin 1 and isospin 1. Thus the covalent bond concept, if it is
directly transferred from molecules to nuclei, does not give us a good quanti-
tative description of what is going on in nuclei. It should be noted that this is
not a consequence of confinement, but rather of direct quark exchange being
suppressed as a result of the quarks having three different colour charges.

Meson exchange. Up to now we have neglected the fact that as well as the
three constituent quarks in the nucleon there are additional quark-antiquark
pairs (sea quarks) which are continually being created from gluons and an-
nihilated back into them again. We may interpret this admixture of quark-
antiquark pairs as a relativistic effect, which, due to the size of the strong
coupling constant αs, we would be wrong to neglect. An effective quark-
quark exchange may be produced by colour neutral quark-antiquark pairs,
as is shown in Fig. 16.10a.

This quark-antiquark exchange actually plays a larger role in the nucleon-
nucleon interaction than does the simple swapping of two quarks. It must
be stressed that this exchange of colour neutral quark-antiquark pairs does
not only dominate at great separations where confinement only allows the
exchange of colour neutral objects but also at relatively short distances. One
may thus understand the nuclear force as a relativistic generalisation of the
covalent strong force via which the nucleons finally exchange quarks.

Ever since Yukawa in 1935 first postulated the existence of the pion
[Yu35, Br65], there have been attempts to describe the inter-nuclear forces
in terms of mesonic exchange. The exchange of mesons with mass m leads to
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Fig. 16.10. (a) Representation of quark exchange between nucleons via the ex-
change of a quark-antiquark pair. Antiquarks are here depicted as quarks moving
backwards in time. (b) The exchange of a meson is rather similar to this.

a potential of the form

V = g · e−
mc
�
r

r
, (16.14)

where g is a charge-like constant. This is known as the Yukawa potential.

To derive the Yukawa potential we first assume that the nucleon acts as a source
of virtual mesons in the same way as an electric charge may be viewed as a source
of virtual photons.

We start with the wave equation of a free, relativistic particle with mass m. If
we replace the energy E and momentum p in the energy momentum relationship
E2 = p2c2 +m2c4 by the operators i�∂/∂t and −i�∇, as is done in the Schrödinger
equation, we obtain the Klein-Gordon equation:

1

c2

∂2

∂t2
Ψ(x, t) =

(
∇2 − μ2)Ψ(x, t) where μ =

mc

�
. (16.15)

For a massless particle (μ=0) this equation describes a wave travelling at the
speed of light. If we replace Ψ by the electromagnetic four-potential A = (φ/c, A)
we obtain the equation for electromagnetic waves in vacuo at a great distance from
the source. One may thus interpret Ψ(x, t) as the wave function of the photon.

Consider now the static field limit where (16.15) reduces to

(
∇2 − μ2)ψ(x) = 0 . (16.16)

If we demand a spherically symmetric solution, i.e., one that solely depends upon
r = |x| we find

1

r2

d

dr

(
r2 dψ(r)

dr

)
− μ2ψ(r) = 0 . (16.17)
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A particularly simple ansatz for the potential V that results from exchanging
the particle is V (r) = g · ψ(r), where g is an arbitrary constant. It is clear that
this ansatz can make sense if we consider the electromagnetic case: in the limit
μ → 0 we obtain the Poisson equation for a space without charges from (16.16)
and we obtain from (16.17) the Coulomb potential VC ∝ 1/r, i.e., the potential
of a charged particle at a great separation where the charge density is zero. If we
now solve (16.17) for the massive case, we obtain the Yukawa potential (16.14).
This potential initially decreases roughly as 1/r and then much more rapidly. The
range is of the order of 1/μ = �/mc, which is also what one would expect from the
uncertainty relation [Wi38]. The interaction due to pion exchange has a range of
about 1.4 fm.

The above remarks are somewhat naive and not an exact derivation. We have ig-
nored the spin of the particle: the Klein-Gordon equation holds for spinless particles
(luckily this is true of the pion). Additionally a virtual meson does not automati-
cally have the rest mass of a free particle. Furthermore these interactions take place
in the immediate vicinity of the nucleons and the mesons can strongly interact with
them. The wave equation of a free particle can at best be an approximation.

Since the range of this potential decreases as the meson mass m increases, the
most important exchange particles apart from the pion itself are the lightest
vector mesons, the 
 and the ω. The central potential of the nuclear force
can be understood in this framework as a consequence of two pion exchange,
where the pions combine to JP (I) = 0+(0). The spin and isospin dependence
of the nuclear force comes from 1 meson exchange and in particular because
both pseudoscalar and vector mesons are exchanged. The trading of pions be-
tween the nucleons is especially important since the pion mass is so small that
they can be exchanged at relatively large distances (> 2 fm). In these models
one neglects the internal structure of nucleons and mesons and assumes that
they are point particles. The meson-nucleon coupling constants that emerge
from experiment must be slightly adapted to take this into account.

Since mesons are really colour neutral quark-antiquark pairs their ex-
change and that of colour neutral qq pairs give us, in principle, two equivalent
ways of describing the nucleon-nucleon interaction (Fig. 16.10b). At shorter
distances, where the structure of the nucleons must definitely play a part, a
description in terms of meson exchange is inadequate. The coupling constant
for the exchange of ω mesons, which is responsible for the repulsive part
of the potential, has to be given an unrealistically high value – about two
or three times the size one would accept from a comparison with the other
meson-nucleon couplings. The repulsive part of the potential is better de-
scribed in a quark picture. On the other hand one pion exchange models give
an excellent fit to the data at larger separations. At intermediate distances
various parameters need to be fitted by hand in both types of model.

In this way we see that it could be possible to trace back the nuclear force
to the fundamental constituents of matter. This is very satisfying for our
theoretical understanding of the nuclear force, but a quantitative description
of the nuclear force is not made any easier by this transition from a mesonic
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to a quark picture. To describe the forces emanating from meson exchange
inside a quark picture we would need to know the probability with which the
quark-antiquark pairs in the nucleus can turn into mesons. These calculations
are intractable since the strong coupling constant αs is very large at small
momenta. For this reason phenomenological meson exchange models are still
today the best way to quantitatively describe the nuclear force.

Problems
1. The nuclear force

The nuclear force is transmitted by exchanging mesons. What are the ranges of
the forces generated by exchanging the following: a π, two π’s, a , an ω? Which
properties of the nuclear force are determined by the exchange particles?

2. Neutron-proton scattering
How large would the total cross-section for neutron-proton scattering be if only
the short range repulsion (range, b = 0.7 fm) contributed? Consider the energy
regime in which � = 0 dominates.
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Nuclei that are in their ground state or are only slightly excited are examples
of degenerate Fermi gases. The nuclear density is determined by the nucleon-
nucleon interaction – essentially by the strong repulsion at short distances
and the weak attraction between nucleons that are further apart. We have
already seen in Sect. 6.2 that nucleons are not localised in the nuclei but
rather move around with rather large momenta of the order of 250 MeV/c.
This mobility on the part of the nucleons is a consequence of the fact that,
as we have seen for the deuteron, the bonds between nucleons in the nucleus
are “weak”. The average distance between the nucleons is much larger than
the radius of the nucleon hard core.

The fact that nucleons actually move freely inside the nucleus is not at all
obvious and of such great conceptual importance that we shall demonstrate it
by considering hypernuclei, i.e., those nuclei containing a hyperon as well as
the usual nucleons. We will see that a Λ particle moves inside such nuclei like
a free particle inside a potential whose depth is independent of the nucleus
under consideration and whose range is the nuclear radius.

The shell model is an improvement upon the Fermi gas model in that it
has a more realistic potential and the spin-orbit interaction is now taken into
consideration. Not only the nuclear density but also the shapes of the nuclei
are fixed by the nucleon-nucleon interaction. A nucleus in equilibrium is not
always a sphere; it may be ellipsoidal or even more deformed.

17.1 The Fermi Gas Model

We wish to show in this chapter that both the nucleonic momentum dis-
tribution that we encountered in quasi-elastic electron-nucleus scattering
(Sect. 6.2) and the nucleon binding energies can be understood in terms
of the Fermi gas model and that, furthermore, the principal terms of the
semi-empirical mass formula (2.8) necessarily emerge from this model. The
protons and neutrons that together build up the nucleus are viewed in the
Fermi gas model as comprising two independent systems of nucleons. As spin
1/2 particles they naturally obey Fermi-Dirac statistics. It is assumed that
the nucleons, inside those constraints imposed by the Pauli principle, can
move freely inside the entire nuclear volume.
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The potential that every nucleon feels is a superposition of the potentials
of the other nucleons. We now assume in our model that this potential has the
shape of a well, i.e., that it is constant inside the nucleus and stops sharply
at its edge (Fig. 17.1).

The number of possible states available to a nucleon inside a volume V
and a momentum region dp is given by

dn =
4πp2dp
(2π�)3

· V . (17.1)

At zero temperature, i.e., in the nuclear ground state, the lowest states will
all be occupied up to some maximal momentum which we call the Fermi
momentum pF. The number of such states may be found by integrating over
(17.1)

n =
V p3F

6π2�3
. (17.2)

Since every state can contain two fermions of the same species, we can have

N =
V (pnF)3

3π2�3
and Z =

V (ppF)3

3π2�3
(17.3)

neutrons and protons respectively (pnF and ppF are the Fermi momenta for the
neutrons and protons). With a nuclear volume

V =
4
3
πR3 =

4
3
πR3

0A (17.4)

and the experimental value R0 =1.21 fm (5.56), which is obtained from elec-
tron scattering, and after assuming that the proton and neutron potential
wells have the same radius, we find for a nucleus with Z=N=A/2 the Fermi
momentum

pF = pnF = ppF =
�

R0

(
9π
8

)1/3

≈ 250MeV/c . (17.5)

The nucleons it seems move freely inside the nucleus with large momenta.
Quasi-elastic electron-nucleus scattering yields a value for the Fermi mo-

mentum (6.22) which agrees well with this prediction. For lighter nuclei pF
tends to be somewhat smaller (Table 6.1, page 80) and the Fermi gas model
is not so good in such cases.

The energy of the highest occupied state, the Fermi energy EF, is

EF =
p2F
2M

≈ 33MeV , (17.6)

where M is the nucleon mass. The difference B′ between the top of the
well and the Fermi level is constant for most nuclei and is just the average
binding energy per nucleon B/A = 7–8 MeV. The depth of the potential and
the Fermi energy are to a good extent independent of the mass number A:
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V0 = EF +B′ ≈ 40MeV . (17.7)

Similarly to the case of a free electron gas in metals, the kinetic energy of
the nucleon gas in nuclear matter is comparable to the depth of the potential.
This is further evidence that nuclei are rather weakly bound systems.

Generally speaking heavy nuclei have a surplus of neutrons. Since the
Fermi level of the protons and neutrons in a stable nucleus have to be equal
(otherwise the nucleus would enter a more energetically favourable state
through β-decay) this implies that the depth of the potential well as it is
experienced by the neutron gas has to be greater than of the proton gas
(Fig. 17.1). Protons are therefore on average less strongly bound in nuclei
than are neutrons. This may be understood as a consequence of the Coulom-
bic repulsion of the charged protons and leads to an extra term in the poten-
tial

VC = (Z − 1)
α · �c

R
. (17.8)

The dependence of the binding energy upon the surplus of neutrons may
also be calculated inside the Fermi gas model. First we find the average kinetic
energy per nucleon

〈Ekin〉 =

∫ pF

0
Ekin p

2dp
∫ pF

0
p2dp

=
3
5
· p

2
F

2M
≈ 20 MeV . (17.9)

The total kinetic energy of the nucleus is therefore

Ekin(N,Z) = N〈En〉 + Z〈Ep〉 =
3

10M
(
N · (pnF)2 + Z · (ppF)2

)
(17.10)

which may be reexpressed with the help of (17.3) and (17.4) as

Ekin(N,Z) =
3

10M
�

2

R2
0

(
9π
4

)2/3
N5/3 + Z5/3

A2/3
. (17.11)
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Fig. 17.1. Sketch of the proton and neutron potentials and states in the Fermi gas
model.
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Note that we have again assumed that the radii of the proton and neutron
potential wells are the same. This average kinetic energy has for fixed mass
number A but varying N or, equivalently, Z a minimum at N = Z. Hence
the binding energy shrinks for N �= Z. If we expand (17.11) in the difference
N − Z we obtain

Ekin(N,Z) =
3

10M
�

2

R2
0

(
9π
8

)2/3 (
A+

5
9

(N − Z)2

A
+ · · ·

)
(17.12)

which gives us the functional dependence upon the neutron surplus. The first
term contributes to the volume term in the mass formula while the second
describes the correction which results from having N �= Z. This so-called
asymmetry energy grows as the square of the neutron surplus and the binding
energy shrinks accordingly. To reproduce the asymmetry term in (2.8) to a
reasonable accuracy it is necessary to take the change in the potential for
N �= Z into account. This additional correction is as important as the change
in the kinetic energy.

We thus see that the simple Fermi gas model, where nucleons move freely
in an averaged out potential, can already render the volume and asymmetry
terms in the semiempirical mass formula plausible.

The Fermi gas model may also usefully be applied to a very different form of
nuclear matter — neutron stars. For these no Coulomb energy has to be considered.
As well as the attractive nuclear force, which would lead to a density 0, we also
have the gravitational force and the resulting density can be up to ten times larger.

Neutron stars are produced in supernova explosions. The burnt out centre of
the star, which is primarily made of iron and whose mass is between one and two
solar masses, collapses under the gravitational force. The high density increases the
Fermi energy of the electrons so much that the inverse β-decay p+e− → n+νe takes
place, while n → p + e− + νe is forbidden by the Pauli principle. All the protons in
the atomic nuclei are step by step converted into neutrons. The Coulomb barrier is
thus removed, the nuclei lose their identity and the interior of the star is eventually
solely composed of neutrons:

56
26Fe + 26e− → 56n + 26νe.

The implosion is only stopped by the Fermi pressure of the neutrons at a density
of 1018 kg/m3. If the mass of the central core is greater than two solar masses, the
Fermi pressure cannot withstand the gravitational force and the star ends up as a
black hole.

The best known neutron stars have masses between 1.3 and 1.5 solar masses.
The mass of a neutron star which is part of a binary system may be read off from
its motion. The radius R can be measured if enough emission lines can still be
measured and a gravitational Doppler shift is observable. This is proportional to
M/R. Typically one finds values like 10 km for the radius.
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We only have theoretical information about the internal structure of neutron
stars. In the simplest model the innermost core is composed of a degenerate neutron
liquid with a constant density. The roughly 1 km thick crust is made out of atoms
which despite the high temperature are bound by a strong gravitational pressure
in a solid state. It is therefore a good approximation to treat the neutron star as a
gigantic nucleus held together by its own gravitational force.

We will assume that the density of the star is constant in the following estimate
of the size of a neutron star. We may then neglect any radial dependence of the
gravitational pressure and employ an average pressure. Let us consider a typical
neutron star with a mass M = 3 · 1030 kg, which is about 1.5 solar masses and
corresponds to a neutron number of N = 1.8 · 1057. If we view the neutron star as
a cold neutron gas, the Fermi momentum is from (17.5)

pF =

(
9πN

4

)1/3
�

R
. (17.13)

The average kinetic energy per neutron is from (17.9)

〈Ekin/N〉 =
3

5
· p2

F

2Mn
=

C

R2
where C =

3�
2

10Mn

(
9πN

4

)2/3

. (17.14)

The gravitational energy of a star with constant density implies that the average
potential energy per neutron is

〈Epot/N〉 = −3

5

GNM2
n

R
, (17.15)

where Mn is the mass of the neutron and G is the gravitational constant. The star
is in equilibrium if the total energy per nucleon is minimised:

d

dR
〈E/N〉 =

d

dR
[〈Ekin/N〉 + 〈Epot/N〉] = 0. (17.16)

and so

R =
�

2 (9π/4)2/3

GM3
nN1/3

. (17.17)

One so finds a radius of about 12 km for such a neutron star, which is very close
to the experimental value, and an average neutron density of 0.25 nucleons/fm3,
which is about 1.5 times the density 0 = 0.17 nucleons/fm3 inside an atomic
nucleus (5.59).

This good agreement between the predicted and measured values is, however,
rather coincidental. In a more exact calculation one must take into account the fact
that the density inside a neutron star grows up to 10 0 and one then would obtain
radii which are much smaller than those measured. On the other hand at a density
of 10 0, the inter-neutron separations are only about 0.8 fm, this means that the
hard cores touch and a strong repulsion takes place. Taking this into account we
can conclude that the gravitational pressure is in equal measure compensated by
the Fermi pressure and by nucleon-nucleon repulsion.

We can also expect an admixture of hyperons in equilibrium with the neutrons
for such high densities as are found at the centre of neutron stars. It may also be
that the overlap of the neutrons, which is largest at the centre of the star, means
that the quarks are no longer confined in the individual neutrons. Neutron stars
could be also partially composed of quark matter.
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17.2 Hypernuclei

The Fermi gas model is generally employed to describe large scale systems
(conduction electrons in metals, nucleons in neutron stars, electrons in a white
dwarf, etc.) where the quantisation of angular momentum may be neglected.
The system of nucleons inside a nucleus is, by contrast, so small that it pos-
sesses discrete energy levels with distinct angular momenta. If one calculates
the energy levels in a spherically symmetric potential, one finds states with
orbital angular momentum � = 0, 1, 2, . . .

At zero temperature the lowest lying states are without exception occu-
pied. The interaction between the nucleons can thus merely cause the individ-
ual nucleons to swap their places in the energy level spectrum. As this does
not change the total energy of the nucleon it is unobservable. This is why
we may talk as though each individual nucleon in the nucleus is in a definite
energy and angular momentum state. The wave function that describes such
a state is the one-particle wave function. The nuclear wave function is just
the product of all the one-particle wave functions.

It would be nice, in order to investigate the energy levels of the individual
nucleons, if we could somehow “mark” them. An elegant way to more or less
do this in an experiment is to introduce a hyperon into the nucleus, ideally
a Λ particle, as a probe. The resulting nucleus is known as a hypernucleus.

A Λ particle in the nucleus cannot decay strongly, since strangeness is
preserved in that interaction. Its lifetime is therefore roughly that of a free Λ
particle, in other words about 10−10 s. This is a long enough time to perform
a spectroscopic analysis and investigate the properties of hypernuclei.

Hypernuclei are most efficiently produced in the strangeness exchange
reaction

K− + A → ΛA + π− (17.18)

where the index shows that a neutron in the nucleus is transformed into a Λ
by the reaction

K− + n → Λ + π− . (17.19)

Figure 17.2 shows an apparatus that was used at CERN in the 1970’s to
generate and detect hypernuclei. The kinematics are particularly convenient
if the incoming kaon momentum is 530 MeV/c and the final state pions are
observed at an angle of θ = 0◦ since in this case no momentum is transferred
to the scattered nucleus. In practice one uses kaon beams with momenta
between 300 and 1000 MeV/c. The transferred momentum is then still small
compared to the Fermi momentum of the nucleons in the nucleus, which can
then be to a certain extent considered as undisturbed.

The energy balance of the reaction (17.19) with a free neutron just de-
pends upon the masses of the particles involved. If, however, the neutron is
bound inside a nucleus and the Λ also remains inside the nucleus then the
energy difference between the K− and the π− yields the difference between
the binding energies of the neutron and the Λ:
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Fig. 17.2. Experimental apparatus for creating and detecting hypernuclei (from
[Po81]). A beam of K− particles hits a 1 cm thick carbon target, generating hy-
pernuclei which, as they are produced, emit π− mesons. The spectrometer has two
stages: initially the momenta of the kaons are measured, then that of the pro-
duced pions. The particles are detected and identified with the help of scintillation
counters (P), wire chambers (W) and Čherenkov counters (Č). The momenta are
measured with dipole magnets (BM) while quadrupole lenses (Q) are responsible
for the focusing. The excitation energies of the hypernuclei may be read off from
the difference in the kaon and pion energies.

BΛ = Bn + Eπ − EK + (MΛ −Mn) · c2 + recoil . (17.20)

Figure 17.3 shows such a pion spectrum for this reaction for a 12C nucleus
as a function of the Λ binding energy, BΛ. The experimental value for the
neutron separation energy in 12C, i.e., that needed to pull a neutron out
of the nucleus, was taken for Bn. As well as a clear peak around BΛ = 0 a
second, smaller maximum at 11 MeV is observed. This may be interpreted as
follows: the transformation of a neutron into a Λ sets free some additional
energy which is given to the pion. This energy can only come from the nuclear
binding.
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Fig. 17.3. The pion spectrum from the reaction K− + 12C → π− + 12
ΛC for a

kaon momentum of 720 MeV/c [Po81]. The pion counting rate at 0◦ is plotted as
a function of the transferred energy BΛ, which may be interpreted as the binding
energy of the Λ in the nucleus. Peak no. 1 corresponds to binding energy BΛ = 0
and peak no. 2, which is the 12

ΛC ground state, has a binding energy of 11 MeV.

We have the following explanation for this. The Pauli principle prevents a
proton or a neutron in the nucleus from occupying a lower energy level that is
already “taken” – the states in the nucleus get filled “from the bottom up”. If
we, however, change a neutron into a Λ particle, then this can occupy any of
the states in the nucleus. The Λ does not experience the individual presence
of the nucleons, but rather just the potential that they create. This potential
is, it should be noted, shallower than that which the nucleons experience.
This is because the Λ-nucleon interaction is weaker than that between the
nucleons themselves. That this is the case may also be seen from the lack of
any bound state formed from a Λ and a single nucleon.

The spectrum of Fig. 17.3 now makes sense: the protons and neutrons in
the 12C nucleus occupy 1s and 1p energy levels and should one of the neutrons
in a 1p state be transformed into a Λ, then this can also take up a 1p state.
In this case the binding energy of the Λ is close to zero. Alternatively it can
land in a 1s state and it then has a binding energy of about BΛ ≈ 11 MeV.

The smeared out peak with BΛ < 0 can be interpreted as arising from
the transformation not of weakly bound neutrons near the Fermi level, but
rather of deeper lying neutrons.

The Λ one-particle states may be seen even more clearly in heavier nuclei.
Systematic investigations, based upon the reaction

π+ + A → ΛA + K+ , (17.21)

have yielded the binding energies of the 1s states and, furthermore, those of
the excited p, d and f states for various nuclei as shown in Fig. 17.4. This
shows the dependence of these binding energies upon the mass number A in
the nuclei concerned.



17.3 The Shell Model 253

0               0.05              0.10              0.15             0.20

30

25

20

15

10

5

A-2/3

89Y
 
Λ

51V
 
Λ 40Ca

 
Λ 28Si

 
Λ

16O
 
Λ 13C

 
Λ 12C

 
Λ

sΛ

pΛ
dΛ

M
eV

[
]

B
Λ

Fig. 17.4. The binding energy of Λ particles in hypernuclei as a function of the
mass number A [Ch89]. The symbols sΛ, pΛ and dΛ refer to the state of the Λ in
the nucleus. The triangles which are connected by the dashed lines are theoretical
predictions.

In this way it is seen that the Λ hyperons occupy discrete energy levels,
whose binding energies increase with the mass number. The curves shown are
the results of calculations assuming both a potential with uniform depth V0 ≈
30 MeV and that the nuclear radius increases as R = R0A

1/3 [Po81, Ch89].
The scale A−2/3 corresponds then to R−2 and was chosen because BΛR

2 is
almost constant for states with the same quantum numbers, cf. (16.13).

The agreement between the calculated binding energies of the Λ particles
and the experimental results is amazing, especially if one considers how simple
the potential well is. The Λ moves as a free particle in the well although the
nucleus is composed of densely packed matter.

17.3 The Shell Model

The consequences that we have drawn from the spectroscopy of the hyper-
nuclei can be directly applied to the nucleons and we may assume that each
nucleon occupies a well-defined energy level.

The existence of these discrete energy levels for the nucleons in the nucleus
is reminiscent of the atomic electron cloud. The electrons move in the atom
in a central Coulombic potential emanating from the atomic nucleus. In the
nucleon, on the other hand, the nucleons move inside a (mean field) potential
produced by the other nucleons. In both cases discrete energy levels arise
which are filled up according to the dictates of the Pauli principle.
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Fig. 17.5. The energy E1 of the first excited state of even-even nuclei. Note that it
is particularly big for nuclei with “magic” proton or neutron number. The excited
states generally have the quantum numbers JP = 2+. The following nuclei are
exceptions to this rule: 4

2He2,
16
8O8,

40
20Ca20,

72
32Ge40,

90
40Zr50 (0+), 132

50Sn82,
208
82Pb126

(3−) and 14
6C8,

14
8O6 (1−) . E1 is small further away from the “magic” numbers –

and is generally smaller for heavier nuclei (data from [Le78]).

Magic numbers. In the atomic case we can order the electrons in “shells”.
By a shell we mean that several energy levels lie close together clearly sepa-
rated from the other states. Matters seem to be similar in nuclei.

It is an observed fact that nuclides with certain proton and/or neutron
numbers are exceptionally stable (cf. Fig. 2.4) [Ha48]. These numbers (2, 8,
20, 28, 50, 82, 126) are known as magic numbers. Nuclei with a magic proton
or neutron number possess an unusually large number of stable or very long
lived nuclides (cf. Fig. 2.2). If a nucleus has a magic neutron number, then
a lot of energy is needed to extract a neutron from it; while if we increase
the neutron number by one then the separation energy is much smaller. The
same is true of protons. It is also found that a lot of energy is needed to
excite such nuclei (Fig. 17.5).

These jumps in the excitation and separation energies for individual nu-
cleons are reminiscent of chemistry: the noble gases, i.e., those with full shells,
are particularly attached to their electrons, while the alkali metals, i.e., atoms
with just one electron in their outermost shell, have very small separation
(ionisation) energies.

The doubly magic nuclei, those with both magic proton and magic neutron
numbers, are exceptionally stable. These are the following nuclides:

4
2He2 ,

16
8O8 ,

40
20Ca20 ,

48
20Ca28 ,

208
82Pb126 .



17.3 The Shell Model 255

The existence of these magic numbers can be explained in terms of the so-
called shell model. For this we need first to introduce a suitable global nuclear
potential.

Eigenstates of the nuclear potential. The wave function of the particles
in the nuclear potential can divided into two parts: a radial one Rn�(r),
which only depends upon the radius, and a part Y m

� (θ, ϕ) which only depends
upon the orientation (this division is possible for all spherically symmetric
potentials; e.g., atoms or quarkonium). The spectroscopic nomenclature for
quarkonium is also employed for the quantum numbers here (see p. 174):

n� with
{
n = 1, 2, 3, 4, · · · number of nodes + 1
� = s,p,d, f, g,h, · · · orbital angular momentum .

The energy is independent of the m quantum number, which can assume
any integer value between ±�. Since nucleons also have two possible spin
directions, this means that the n� levels are in fact 2·(2�+1) times degenerate.
The parity of the wave function is fixed by the spherical wave function Y m

�

and is just (−1)�.
Since the strong force is so short-ranged, the form of the potential ought

to follow the density distribution of the nucleons in the nucleus. For very light
nuclei (A <∼ 7) this would mean a Gaussian distribution. The potential can
then be approximated by that of a three dimensional harmonic oscillator. The
Schrödinger equation can be solved analytically in this particularly simple
case [Sc95]. The energy depends upon the sum N of the oscillating quanta in
all three directions as follows

Eharm. osc. = (N + 3/2) · �ω = (Nx +Ny +Nz + 3/2) · �ω, (17.22)

where N is related to n and � by

N = 2(n− 1) + � . (17.23)

Hence states with even N have positive parity and those with odd N negative
parity.

Woods-Saxon potential. The density distribution in heavy nuclei can be
described by a Fermi distribution, cf. (5.52). The Woods-Saxon potential is
fitted to this density distribution:

Vcentre(r) =
−V0

1 + e(r−R)/a
. (17.24)

States with the same N but different n� values are no longer degenerate
in this potential. Those states with smaller n and larger � are somewhat
lower. The first three magic numbers (2, 8 and 20) can then be understood
as nucleon numbers for full shells:
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N 0 1 2 2 3 3 4 4 4 · · ·
n� 1s 1p 1d 2s 1f 2p 1g 2d 3s · · ·

Degeneracy 2 6 10 2 14 6 18 10 2 · · ·
States with E ≤ En� 2 8 18 20 34 40 58 68 70 · · ·

This simple model does not work for the higher magic numbers. For them
it is necessary to include spin-orbit coupling effects which further split the
n� shells.

Spin-orbit coupling. We may formally introduce the coupling of the spin
and the orbital angular momentum (16.8) in the same manner as for the
(atomic) electromagnetic interaction. We therefore describe it by an addi-
tional �s term in the potential:

V (r) = Vcentr(r) + V�s(r)
〈�s〉
�2

. (17.25)

The combination of the orbital angular momentum � and the nucleon spin s
leads to a total angular momenta j� = ��±�/2 and hence to the expectation
values

〈�s〉
�2

=
j(j + 1) − �(� + 1) − s(s + 1)

2
=

{
�/2 for j = � + 1/2

−(� + 1)/2 for j = � − 1/2 .
(17.26)

This leads to an energy splitting ΔE�s which linearly increases with the
angular momentum as

ΔE�s =
2�+ 1

2
· 〈V�s(r)〉 . (17.27)

It is found experimentally that V�s is negative, which means that the j =
�+ 1/2 is always below the j = �− 1/2 level, in contrast to the atomic case,
where the opposite occurs.

Usually the total angular momentum quantum number j = �±1/2 of the
nucleon is denoted by an extra index. So, for example, the 1f state is split
into a 1f7/2 and a 1f5/2 state. The n�j level is (2j + 1) times degenerate.

Figure 17.6 shows the states obtained from the potential (17.25). The
spin-orbit splitting is separately fitted to the data for each n� shell. The
lowest shells, i.e., N = 0, N = 1 and N = 2, make up the lowest levels and
are well separated from each other. This, as we would expect, corresponds
to the magic numbers 2, 8 and 20. For the 1f shell, however, the spin-orbit
splitting is already so large that a good sized gap appears above 1f7/2. This
in turn is responsible for the magic number 28. The other magic numbers can
be understood in a similar fashion.

This then is the decisive difference between the nucleus and its atomic
cloud: the �s coupling in the atom generates the fine structure, small correc-
tions of the order of α2, but the spin-orbit term in the nuclear potential leads
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Fig. 17.6. Single par-
ticle energy levels calcu-
lated using (17.25) (from
[Kl52]). Magic numbers ap-
pear when the gaps between
successive energy shells are
particularly large. This dia-
gram refers to the nucleons
in the outermost shells.

to sizeable splittings of the energy states which are indeed comparable with
the gaps between the n� shells themselves. Historically speaking, it was a
great surprise that the the nuclear spin-orbit interaction had such important
consequences [Ha49, Gö55].

One particle and one hole states. The shell model is very successful
when it comes to explaining the magic numbers and the properties of those
nuclei with “one nucleon too many” (or too few).

Those nuclei with mass number between 15 and 17 form a particularly
attractive example of this. Their excited states are shown in Fig. 17.7. The
15N and 15O nuclei are so-called mirror nuclei, i.e., the neutron number of the
one is equal to the proton number of the other and vice versa. Their spectra
are exceedingly similar, both in terms of where the levels are and also in terms
of their spin and parity quantum numbers. This is a consequence of the isospin
independence of the nuclear force: if we swap protons and neutrons the strong
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force essentially does not notice it. The small differences in the spectra can
be understood as electromagnetic effects. While the energy levels of 16O do
not resemble those of its neighbours, the 17O and 17F nuclei are, once again,
mirror nuclei and have very similar excitation spectra. It is striking that the
nuclei with mass numbers 15 and 16 require much more energy to reach their
first excited states than do those with mass number 17.

These spectra can be understood inside the shell model. The 16O nucleus
possesses 8 protons and 8 neutrons. In the ground state the 1s1/2, 1p3/2

and 1p1/2 proton and neutron shells are fully occupied and the next highest
shells, 1d5/2, are empty. Just as in atomic physics the angular momenta of
the particles in a full shell add up to zero and the overall parity is positive.
The ground state of 16O has then the quantum numbers JP = 0+. Since the
gap between the 1p1/2 and 1d5/2 energy shells is quite large (about 10 MeV)
there are no easily reachable excitation levels.

The two nuclei with A=17 both have a single extra nucleon in the 1d5/2

shell. The spin and parity of the nucleus are completely fixed by this one
nucleon. The 2s1/2 shell happens to be just a little above the 1d5/2 shell
and as small an energy as 0.5 MeV suffices to excite this single nucleon to
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Fig. 17.7. Energy levels of the 15N, 15O, 16O, 17O and 17F nuclei. The vertical axis
corresponds to the excitation energy of the states with the various ground states
all being set equal, i.e., the differences between the binding energies of these nuclei
are not shown.
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the next shell. The nuclear quantum numbers change from 5/2+ to 1/2+ in
this transition. The excited nucleon later decays, through photon emission,
into the lowest possible state. Just as we talk of valence electrons in atomic
physics, so these nucleons that jump between shells are known as valence
nucleons. The 1d3/2 shell is about 5 MeV above the 1d5/2 one and this an
amount of energy is required to reach this state.

The A = 15 ground states lack one nucleon in the 1p1/2 shell. One speaks
of a hole and uses the notation 1p−1

1/2. The quantum numbers of the hole
are those of the nucleus. Thus the ground states of these nuclei have the
quantum numbers JP = 1/2−. If a nucleon from the 1p3/2 shell is excited
into the vacant state in the 1p1/2, and in some sense fills the hole, a hole is
then created in the 1p3/2 shell. The new nuclear state then has the quantum
numbers JP = 3/2−.

Magnetic moments from the shell model. If in the shell model we
associate spin and orbital angular momentum to each individual nucleon, then
we can understand the magnetic moment of the nucleus from the sum over
the nucleonic magnetic moments based upon their spin and orbital angular
momenta:

μnucleus = μN · 1
�

A∑

i=1

{�ig� + sigs} . (17.28)

Note that

g� =
{

1 for protons
0 for neutrons (17.29)

and (from 6.7 etc.):

gs =
{

+5.58 for protons
−3.83 for neutrons. (17.30)

Recall our five nuclei with mass numbers from 15 to 17. The magnetic
moment of 16O is zero, which makes perfect sense since in a full shell the
spins and angular momenta add up to zero and so the magnetic moment
must vanish.

We are in a position to make quantitative predictions for one particle
and one hole states. We first assume that the nuclear magnetic moment is
determined by that of the single nucleon or hole

μnucleus =
1
�
〈ψnucleus|g�� + gss|ψnucleus〉 · μN . (17.31)

The Wigner-Eckart theorem tells us that the expectation value of every vector
quantity is equal to its projection onto the total angular momentum, which
here means the nuclear spin J :

μnucleus = gnucleus · μN · 〈J〉
�

(17.32)
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where

gnucleus =
〈JMJ |g��J + gssJ |JMJ 〉

〈JMJ |J2|JMJ 〉
. (17.33)

Since the nuclear spin J in our model is nothing but the total angular mo-
mentum of our single nucleon j and we have

2�j = j2 + �2 − s2 2sj = j2 + s2 − �2 (17.34)

we see that

gnucleus =
g� {j(j+1)+�(�+1) − s(s+1)} + gs {j(j+1)+s(s+1) − �(�+1)}

2j(j+1)
.

(17.35)
The magnetic moment of the nucleus is defined as the value measured

when the nuclear spin is maximally aligned, i.e., |MJ | = J . The expectation
value of 〈J〉 is then J� and one finds

|μnucleus|
μN

= gnucleus · J =
(
g� ±

gs − g�
2�+ 1

)
· J for J = j = �± 1

2
.

(17.36)
There are many different ways to measure nuclear magnetic moments,

e.g., in nuclear magnetic spin resonance or from optical hyperfine structure
investigations [Ko56]. The experimental values [Le78] of the magnetic mo-
ments can be compared with the predictions of (17.36).

μ/μNNucleus State JP

Model Expt.

15N p-1p−1
1/2 1/2− −0.264 −0.283

15O n-1p−1
1/2 1/2− +0.638 +0.719

17O n-1d5/2 5/2+ −1.913 −1.894
17F p-1d5/2 5/2+ +4.722 +4.793

The magnetic moments of the A = 15 and A = 17 nuclei can, we see,
be understood in a single particle picture. We should now perhaps admit to
having chosen the example with the best agreement between the model and
experiment: firstly these nuclei are, up to one single nucleon or hole, doubly
magic and secondly they have a relatively small nucleon number which means
that effects such as polarisation of the remainder by the valence nucleon are
relatively tiny.

We assume for nuclei with odd mass number whose incomplete shells con-
tain more than one nucleon or hole that the total nucleon magnetic moment
is due to the one unpaired nucleon [Sc37]. The model then roughly repro-
duces the experimental trends, but disagreements as big as ±1μN and larger
appear for many nuclei. The magnetic moment is, generally speaking, smaller
than expected. The polarisation of the rest of the nucleus from the unpaired
nucleon tends to explain this [Ar54].
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17.4 Deformed Nuclei

The shell model approximation which assumes that nuclei are spherically
symmetric objects – plus, of course, the additional spin-orbit interaction – is
only good for those nuclei which are close to having doubly magic full shells.
For nuclei with half full shells this is not the case. In such circumstances the
nuclei are deformed and the potential is no longer spherically symmetric.

It was already realised in the 1930’s, from atomic spectroscopy, that nuclei
are not necessarily always spherical [Ca35, Sc35]. Deviations in the fine struc-
ture of the spectra hinted at a non-vanishing electrical quadrupole moment,
i.e. that the charge distribution of the nuclei was not spherically symmetric.

Quadrupole moments. The charge distribution in the nucleus is described
in terms of electric multipole moments. Since the odd moments (e.g., the
dipole and octupole) have to vanish because of parity conservation, the elec-
tric quadrupole moment is the primary measure of in how far the charge
distribution, and hence the nucleus, deviate from being spherical.

The classical definition of a quadrupole moment is

Q =
∫ (

3z2 − x2
)

(x) d3x . (17.37)

An ellipsoid of diameter 2a in the z direction and diameter 2b in the other
two directions (Fig. 3.9), with constant charge density 
(x) has the following
quadrupole moment:

Q =
2
5
Ze

(
a2 − b2

)
. (17.38)

For small deviations from spherical symmetry, it is usual to introduce a
measure for the deformation. If the average radius is 〈R 〉 = (ab2)1/3 and the
difference is ΔR = a− b then the quadrupole moment is proportional to the
deformation parameter 1

δ =
ΔR

〈R 〉 (17.39)

and we find
Q =

4
5
Ze〈R 〉2δ . (17.40)

Since the absolute value of a quadrupole moment depends upon the charge
and size of the nucleus concerned, we now introduce the concept of the reduced
quadrupole moment to facilitate the comparison of the deformations of nuclei
with different mass numbers. This is a dimensionless quantity and is defined
as the quadrupole moment divided by the charge Ze and the square of the
average radius 〈R 〉:

1 We skip over the exact definition of the deformation parameter here; (17.38) and
(17.39) are approximations for small deformations.
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Fig. 17.8. Reduced quadrupole
moments for nuclei with odd pro-
ton number Z or neutron number
N plotted against this number.
The quadrupole moments van-
ish near closed shells and reach
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Qred =
Q

Ze〈R 〉2 . (17.41)

The experimental data for the reduced quadrupole moments are shown in
Fig. 17.8. Note that no even-even nuclei are included, as quantum mechanics
prevents us from measuring a static quadrupole moment for systems with
angular momenta 0 or 1/2. As one sees, the reduced quadrupole moment is
small around the magic number nuclei but it is large if the shells are not
nearly closed – especially in the lanthanides (e.g., 176Lu and 167Er). If Q is
positive, a > b, the nucleus is prolate (shaped like a cigar); if it is negative
then the nucleus is oblately deformed (shaped like a lense). The latter is the
rarer case.

The electric quadrupole moments of deformed nuclei are too large to be
explained solely in terms of the protons in the outermost, incomplete shell.
It is rather the case that the partially occupied proton and neutron shells
polarise and deform the nucleus as a whole.

Figure 17.9 shows in which nuclides such partially full shells have espe-
cially strong effects. Stable deformed nuclei are especially common among the
rare earths (the lanthanides) and the transuranic elements (the actinides).
The light nuclei with partially full shells are also deformed, but, due to their
smaller nucleon number, their collective phenomena are less striking.

Pairing and polarisation energies. We can see why in particular nuclei
with half full shells are deformed if we consider the spatial wave functions
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of the nucleons. Nucleons in a particular shell have a choice among various
spatial and spin states. In atomic physics we have the Hund rule: as we fill
up an n� subshell with electrons, these initially take up the various hitherto
unoccupied orbitals in position space and only when no empty orbitals are
left do they start to use the space in every orbital for a further electron with
opposite spin. The underlying reason is the electromagnetic repulsion of the
electrons, which makes it energetically favourable to have two electrons in
spatially separated orbitals rather than having two electrons with opposite
spins in the same orbital. Matters are different in nuclear physics, however.
The force between the nucleons is, on average, an attractive one. This has
two consequences:

– Nuclei become more stable if the nucleons are grouped in pairs with the
same spatial wave function and if their angular momenta add to zero, i.e.,
also: �1 = �2, m1 = −m2, j1 + j2 = 0. We talk of a pairing force. Such
pairs have angular momentum and parity, JP = 0+.

– Nucleon pairs prefer to occupy neighbouring orbitals (states with adjacent
m values) and this leads, if the nucleus has a half full shell, to deformations.
If the filled orbitals tend to be parallel to the symmetry axis (Fig. 17.10a)
then the nucleus is prolately deformed and if they are perpendicular to this
axis (Fig. 17.10b) the resulting nucleus is oblate.

The angular momenta and parity of nuclei are then, not only for almost
magic nuclei but quite generally, fixed by individual, unpaired nucleons. Dou-
bly even nuclei will, because of the pairing energy, always have JP = 0+

ground states, the JP of singly odd nuclei will be determined by their one
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Fig. 17.10. a,b. Overlapping orbitals with adjacent m quantum numbers. If m is
close to zero the orbitals are parallel to z, the symmetry axis (a). If |m| is large
they are perpendicular to this axis (b). The remainder of the nucleus is drawn here
as a sphere. This is because nuclear deformations are primarily due to the nucleons
in partially filled shells.

odd nucleon and, finally, the spin and parity of doubly odd nuclei will de-
pend upon how the quantum numbers of the two unpaired nucleons combine.
Experimentally determined ground state quantum numbers are in excellent
agreement with these ideas.

Single particle movement of the nucleons. It is necessary, should one
want to calculate the energy levels of a deformed nucleus, to recall that the
nuclear potential has an ellipsoidal shape. The spin-orbit force is as strong as
for the spherically symmetric potential. The one particle states of deformed
nuclei may be found in a conceptionally simple way (the Nilsson model [Ni55])
but the calculations are tedious. The nucleon angular momentum is no longer
a conserved quantity in a deformed potential and its place is taken by the
projection of the angular momentum onto the symmetry axis of the nucleus.
The Nilsson wave functions are therefore built up out of shell model wave
functions with the same n but different �, although their angular momentum
projections mj must be the same.

17.5 Spectroscopy Through Nuclear Reactions

Until now we have mainly concentrated upon experiments using electromag-
netic probes (electrons), since the electromagnetic interaction is particularly
easily described. It is, however, the case that our modern understanding of
nuclear structure, and in particular the quantitative determination of the
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single particle properties of low lying nuclear states, comes from analysing
reactions where the target and the projectile interact via the nuclear force.
Our first quantitative knowledge of the various components of the wave func-
tions goes back to studies of so-called direct reactions. The most prominent
examples of these are “stripping” and “pick-up” reactions. In what follows we
will restrict ourselves to a qualitative description of these two types of reac-
tions and show how complex the problem becomes when one tries to extract
quantitative information.

Stripping reactions. Stripping reactions are nuclear reactions where one or
more of the nucleons from the projectile nucleus are stripped off it and trans-
ferred to the target nucleus. The simplest examples of this are the deuteron
induced (d,p) and (d,n) reactions:

d + AZ → p + A+1Z and d + AZ → n + A+1(Z+1) .

The following shorthand notation is commonly used to denote such reactions

AZ(d,p)A+1Z AZ(d,n)A+1(Z+1) .

If the incoming deuteron carries a lot of energy, compared to the binding
energies of the deuteron and of a neutron in the (A+1) nucleus, then a quan-
titative description of the stripping reaction is quite possible. The stripping
reaction 16O(d,p)17O is depicted in Fig. 17.11.

The cross-section may be calculated from Fermi’s golden rule and one
finds from (5.22)

dσ
dΩ

=
2π
�

|Mfi|2
p2dp V 2

(2π�)3vDdE
. (17.42)

We write the matrix element as

Mfi = 〈ψf |Un,p|ψi〉 , (17.43)

where ψi and ψf are the initial and final state wave functions and Un,p is the
interaction that causes the stripping reaction.

16O 17O

n

p
p

n

pp
pD

Final stateInitial state

Fig. 17.11. Sketch of the stripping reaction 16O(d, p)17O.
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Born approximation. The physical interpretation of the stripping reaction
becomes evident when we consider the matrix element in the Born approx-
imation. We assume thereby that the interaction between the deuteron and
the nucleus and also that between the proton and the nucleus are both so
weak that we may describe the incoming deuteron and the outgoing proton
by plane waves. In this approximation the initial state wave function is

ψi = φA φD exp(ipDxD/�). (17.44)

Here φA signifies the ground state of the target nucleus and φD the internal
structure of the deuteron. The incoming deuteron plane waves are contained
in the function exp(ipDxD/�). The final state wave function

ψf = φA+1 exp(ippxp/�) (17.45)

contains the wave function of the nucleus containing the extra neutron and
the outgoing proton’s plane waves.

The only likely final states in stripping reactions are those such that the
nucleon state is not too greatly changed: so we can write the final state to a
good approximation as a product of the type

φA+1 = φAψn , (17.46)

where φA describes the internal state of the target nucleus and ψn is a shell
model wave function of the neutron in the potential of the nucleus A.

If the stripping process takes place via a very short ranged interaction

Un,p(xn,xp) = U0 δ(xn − xp) , (17.47)

then the matrix element has a very simple form

〈ψf |Un,p|ψi〉 =
∫
ψ∗n (x) U0 exp(i(pD/2 − pp)x/�) φD(x = 0) d3x

= U0 φD(x = 0)
∫
ψ∗n (x) exp(iqx/�) d3x . (17.48)

Since pD/2 is the average momentum of the proton in the deuteron before
the stripping reaction, q = pD/2−pp is just the average momentum transfer
to the nucleus.

The amplitude of the stripping reaction, if we use the Born approximation
and a short ranged interaction, is just the Fourier integral of the wave function
of the transferred neutron. The differential cross-section of the (d,p) reaction
is proportional to the square of the matrix element and hence to the square
of the Fourier integral.

The most important approximation that we have made in calculating the
matrix element is the assumption that the interaction which transfers the
neutron from the deuteron to the nucleus leaves the motion of the proton ba-
sically unchanged. This is a good approximation for deuteron energies greater
than 20 MeV or so, since the deuteron binding energy is only 2.225 MeV. The
proton will remain on its course even after the neutron is detached.
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Fig. 17.12. Proton spectrum of a (d, p) reaction on 16O, measured at 45◦ and pro-
jectile energy of 25.4 MeV (from [Co74]). The channel number is proportional to the
proton energy and the excitation energies of 16O are marked at the various peaks.
The ground state and the excited states at 0.87 MeV and 5.08 MeV possess JP =
5/2+, 1/2+ and 3/2+ quantum numbers respectively and essentially correspond to
the (n-1d5/2)

1, (n-2s1/2)
1 and (n-1d3/2)

1 single particle configurations.

Angular momentum. The orbital angular momentum transfer in the strip-
ping reaction is just the orbital angular momentum of the transferred neutron
in the state |ψn〉. The transfer of �� angular momentum to a nucleus with
radius R requires a momentum transfer of roughly |q| ≈ ��/R. This implies
that the first maximum in the angular distribution dσ/dΩ of the protons
will lie at an angle which corresponds to this momentum transfer. Thus the
angular distribution of stripping reactions tells us the � quantum number of
the single particle states.

The reaction 16O(d, p)17O. Figure 17.12 displays the outgoing proton
spectrum as measured in the reaction 16O(d,p)17O at a scattering angle of
θ = 45◦ and with incoming deuteron energies of 24.5 MeV. One recognises 6
peaks which all correspond to different, discrete excitation energies Ex of 17O.
If one measures at a smaller angle θ, and hence smaller momentum transfer,
three of these maxima disappear. (The mechanisms which are responsible for
the population of these states are more complicated than those of the direct
reactions.) The three remaining maxima correspond to the following single
particle states: the JP =5/2+ (n-1d5/2) ground state, the JP =1/2+ (n-2s1/2)
0.87 MeV excited state and the JP =3/2+ (n-1d3/2) 5.08 MeV excited state
(cf. Fig. 17.7).

The angular distributions of the protons for these three single particle
states are shown in Fig. 17.13. The maximum of the data for Ex = 0.87 MeV
is at θ = 0◦, i.e., at zero momentum transfer. This implies that the neutron
which has been transferred to the nucleus is in a state with zero orbital
angular momentum �. And indeed we interpreted this state, with quantum
numbers JP = 1/2+, in the shell model as an 16O nucleus with an extra
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Fig. 17.13. Angular distributions
from the 16O(d, p)17O reaction for pro-
jectile energies of 25.4 MeV (from
[Co74]). The continuous curves are the
results of calculations where the ab-
sorption of the deuteron by 16O was
taken into account (DWBA).

neutron in the 2s1/2 shell. The two other angular distributions shown have
maxima at larger momentum transfers, which signify � = 2. This is also
completely consistent with their quantum numbers. The relative positions of
the shells can be determined from such considerations.

Limits of the Born approximation – DWBA. The results shown in
Fig. 17.13 cannot be obtained using the Born approximation, since neither the
deflection of the particles in the nuclear field nor absorption effects are taken
into account in that approximation. One way to improve the approximation is
to use more realistic incoming deuteron and outgoing proton wave functions,
so that they describe the scattering process as exactly as possible, instead of
the plane waves we have employed until now. These wave functions are pro-
duced by complicated computer analyses and the results are then compared
with our experimental knowledge of elastic proton and deuteron scattering
off nuclei. This calculational procedure is known as the distorted wave Born
approximation (DWBA). The continuous lines in Fig. 17.13 are the results
of such very tedious calculations. It is obvious that even the best models are
only capable of quantitatively reproducing the experimental results at small
momentum transfers (small angles).
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Fig. 17.14. Sketch of the 16O(p, d)15O pick up reaction.

Pick up reactions. Pick up reactions are complementary to stripping re-
actions. A proton or neutron is carried away from the target nucleus by a
projectile nucleus. Typical examples of this are the (p,d), (n,d), (d,3 He) and
(d,3 H) reactions. A (p,d) reaction is shown as an example in Fig. 17.14.

The ideas we used to understand the (d,p) stripping reaction may be
directly carried over to the (p,d) pick up reaction. In the Born approximation,
we must only replace the wave function of the transferred neutron |ψn〉 in
(17.48) by that of the |ψ−1

n 〉 hole state.
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Fig. 17.15. Spectrum of 3He nuclei detected at 11◦ when 52 MeV deuterons were
scattered off 16O (from [Ma73]). The cross-sections for the production of 15N in the
ground state and in the state with an excitation energy of 6.32 MeV are particularly
large (and are scaled down in the diagram by a factor of 2.5).
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The reaction 16O(d, 3He)15N. It may be clearly seen from Fig. 17.15 that
two 15N states are primarily produced in the reaction 16O(d, 3He)15N. These
two states are the 1p1/2 and 1p3/2 hole states. The other states are rather
more complicated configurations (e.g., one particle and two holes) and are
much less often excited.

The energy difference between the ground state (JP = 1/2−) and the
JP =3/2− state is 6.32 MeV (cf. Fig. 17.7). This corresponds to the splitting
of the 1p shell in light nuclei due to the �s interaction.

The differential cross-sections for these states are shown in Fig. 17.16. The
model calculations are based upon the simple assumption that these states
are pure p1/2 and p3/2 hole states. They clearly reproduce the experimen-
tal data at small momentum transfers rather well. The admixture of higher
configurations must then be tiny. At larger momentum transfers the reaction
mechanisms become more complicated and the approximations used here are
no longer good enough.

Direct reactions with heavy nuclei. Stripping and pick up reactions are
well suited for the task of investigating the one particle properties of both
spherical and deformed heavy nuclei. Valence nucleons or valence holes are
again excited close to full and nearly empty shells. In those nuclei where there
are half full shells, excited states cannot be described by an excited state of
the shell model, rather a mixture of various shell model states must be used.
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The properties of the excited states are then determined by the coupling of
the valence nucleons.

17.6 β-Decay of the Nucleus

β-decay provides us with another way to study nuclear structure. The β-decay
of individual hadrons was treated in Sect. 15.5 where the example of free
neutron decay was handled in more detail. At the quark level this transition
corresponds to a d-quark changing into a u-quark. We have already seen that
the axial coupling (15.38) is modified in the n → p transition by the internal
hadronic structure and the influence of the strong interaction.

If the nucleon is now contained inside a nucleus, further effects need to
be considered.

– The matrix element must now contain the overlap of the initial and final
state nuclear wave functions. This means that the matrix element of β-
decay lets us glimpse inside the nucleus containing the nucleons.

– The difference between the binding energies of the nuclei before and after
the decay defines the type of decay (β+ or β−) and fixes the size of the
phase space.

– The Coulomb interaction influences the energy spectrum of the emitted
electrons or positrons, especially at small velocities, and thus also modifies
the phase space.

Phase space. We calculated in (15.47) the decay rate as a function of the to-
tal energy E0 of the electron and the neutrino. In nuclei the difference between
the masses of the initial and final state nuclei yields E0. The integral over the
phase space f(E0) is now altered by the Coulomb interaction between the
charge ±e of the emitted electron or positron and that Z ′e of the remaining
nucleus. This is described by the so-called Fermi function F (Z ′, Ee) which is
approximately given by

F (Z ′, Ee) ≈
2πη

1 − e−2πη
where η = ∓ Z ′e2

4πε0�ve
= ∓Z

′α

ve/c
for β± ,

(17.49)
where ve is the measured final velocity of the electron or positron. The phase
space function f(E0) in (15.46) is replaced by

f(Z ′, E0) =
∫ E0

1

Ee

√
E2
e − 1 · (E0 − Ee)2 · F (Z ′, Ee) dEe

where E = E/mec
2 , (17.50)

which can be calculated to a high precision [Be69]. The influence of the
Coulomb force upon the β-spectrum is shown in Fig. 17.17.
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Fig. 17.17. Schematic appearance of the electron spectrum in β-decay. The phase
space factor from (15.45) produces a spectrum with a parabolic fall off at both ends
(dotted line). This is modified by the interaction of the electron/positron with the
Coulomb field of the final state nucleus (continuous lines). These latter curves were
calculated from (17.49) for Z′ = 20 and E0 = 1 MeV.

In spectroscopy the information about the structure of the nucleus is con-
tained in the matrix element. The product of the half life t1/2 and f(Z ′, E0),
which is called the ft value, is directly proportional to the inverse square of
the matrix element. From (15.47) using t1/2 = ln 2 · τ one obtains:

f(Z ′, E0) · t1/2 = ft value =
2π3

�
7

m5
ec

4
· ln 2 · 1

V 2
· 1
|Mfi|2

. (17.51)

The ft values vary from as little as 103 s to as much as 1022 s . Normally
therefore the base ten logarithm of its value (in seconds), the log-ft value, is
quoted.

The matrix element. The matrix element is influenced not only by the
wave function of the nucleon in which the quark transition takes place, but
also in turn by the wave function of the nucleus containing the nucleon. In
both cases this depends upon how the wave functions before and after the
decay overlap.

The ratio of the vector and axial vector parts is determined by the nuclear
wave function. Those decays that take place through the vector part of the
transition operator are called Fermi decays. The spin of the interacting quark
does not change here and so the spin of the nucleon is unaffected. The total
spin of the electron and the neutrino is thus zero. The decays due to the axial
part are called Gamow-Teller decays. The lepton spins add up to one here.
Generally both Fermi and Gamow-Teller β-decays are possible. There are,
however, cases where only, or nearly only, one of the decays takes place.

Let us attempt to estimate what role is played by orbital angular momen-
tum. The wave function of the electron and the neutrino may be written as
a plane wave to a good approximation (cf. 5.18):

ψ(x) =
eipx/�

√
V

=
1√
V

{
1 + ipx/� + · · ·

}
. (17.52)
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Since � = x × p this is an expansion in the orbital angular momentum
quantum number �. Since the momenta are at most of the order of a few
MeV/c and the nuclear radii are a few fm, |p| · R/� must be of the order of
10−2. The ft value contains the square of the matrix element and so we see
that every extra unit of � suppresses the decay by a factor of 10−4−10−3.
Decays with � = 0 are called allowed, those with � = 1 are then forbidden
and if � = 2 we speak of a doubly forbidden decay etc. If � is odd the parity
of the nuclear wave function changes, while if it is even parity is conserved.

The following selection rules hold for allowed decays as a result of conser-
vation of angular momentum and parity:

ΔP = 0, ΔJ = 0 for Fermi decays,
ΔP = 0, ΔJ = 0,±1; (0 → 0 forbidden) for Gamow-Teller decays.

Large � decays only play a role if lower � transitions are ruled out on
grounds of angular momentum or parity conservation. Thus for example the
decay of a 1− into a 0+ nucleus is only possible via a (once) forbidden tran-
sition and not by an allowed Gamow-Teller transition since the parity of the
nucleus changes.

An example of a four times forbidden β-decay is the transition from 115In
(JP = 9/2+) into 115Sn (JP = 1/2+). The log-ft value of this decay is 22.7
and its half life is, believe it or not, 6 · 1014 years.

Super allowed decays. If the initial and final state wave functions overlap
perfectly then the decay probability is

1p1/2

1p3/2

1s1/2

p          n

p          n

14N 14O

1p1/2

1p3/2

1s1/2

particularly large. This is the case if
the created proton and the decayed
neutron (or the other way round) have
all their quantum numbers in com-
mon, i.e., the two nuclear states are in
the same isospin multiplet. Such de-
cays are called super allowed decays.
The ft values of such transitions are

roughly that of the decay of a free neu-
tron.

Super allowed decays are generally β+-decays. This is because the
Coulomb repulsion inside the nucleus slightly splits the states in an isospin
multiplet; the excitation energy is higher for those states with more protons
and fewer neutrons (cf. Fig. 2.6). Thus the protons in an isospin multiplet
decay into neutrons but not the other way round. The β−-decay of 3H into
3He is an exception to this rule (another is free neutron decay). This is be-
cause the difference between the proton and neutron masses is larger than
the decrease in the binding energy of 3He from Coulomb repulsion.

An attractive example of β-decay inside an isospin triplet is provided by
the process 14O →14N+e+ + νe, which is a 0+ → 0+ transition (cf. Fig. 2.6)
and hence purely a Fermi decay. The three lowest proton shells in the 14O
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nucleus, i.e., the 1s1/2, 1p3/2 and 1p1/2 shells, are fully occupied as are the
two lowest neutron shells, but the 1p1/2 neutron shell is empty. Thus one of
the two valence nucleons (the protons in the 1p1/2 shell) can change into a
neutron in the same shell and with the same wave function.

Allowed decays. Allowed decays are those with �=0. A familiar example
is the β−-decay of the nuclide 14C, which is produced by cosmic rays in the
upper atmosphere in the reaction 14N(n,p) 14C, and is used to determine the
age of organic materials. The 14C ground state belongs, see Fig. 2.6, to an
isospin triplet which also includes the 2.31 MeV 14N state and the ground
state of 14O.

For reasons of energy 14C is only allowed to decay into the 14N ground
state and this can only happen if the nucleon flips its spin (a Gamow-Teller
decay). The half life (t1/2 =5730 years) and the log-ft value (9.04) are much
larger than for other allowed decays. This implies that the overlap of the wave
functions are extremely small – which is a stroke of luck for archaeology.

Forbidden decays. Heavy nuclei have an excess of neutrons. If a proton
were to decay inside such a nucleus, it would find that the equivalent neutron
shell was already full. A super allowed β+-decay is therefore not possible in
heavy nuclei. On the other hand the decay of a neutron into a proton with
the same quantum numbers is possible but the resulting nucleus would be in
a highly excited state and this is generally ruled out for reasons of energy.

The 40K nuclide is a good example: it can turn into 40Ar either through
β+-decay or by a K capture and can also β−-decay into 40Ca (cf. Fig. 3.4).
The ground state of 40Ca is a doubly magic nucleus whose 1d3/2 (proton and
neutron) shells are full while the 1f7/2 shells are empty (Fig. 17.18).

The 40K nuclide has the configuration (p-1d−1
3/2, n-1f17/2) and 40Ar has (p-

1d−2
3/2, n-1f27/2). The unpaired nucleons in 40K add to 4−. Hence the decay

40Ar 40K 40Ca
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1d3/2

1f7/2

x x
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1d3/2

1f7/2

p          n

1d3/2

1f7/2

x

Fig. 17.18. Sketch of the
β+- and β−-decays of 40K
in the shell model. The en-
ergies are not to scale.
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into the ground states of 40Ca and 40Ar are triply forbidden. The decay into
the lowest excited state of 40Ar (JP = 2+) via K capture is in principle only
simply forbidden, but the available phase space is very small since the energy
difference is only 0.049 MeV. For these reasons 40K is extremely long lived
(t1/2 = 1.27 · 109 yrs) and is still today, thousands of millions of years after
the birth of the solar system, around us in substantial quantities. It is the
only medium sized nuclide (A < 200) that gives a sizeable contribution to the
natural background radioactivity.

β-decay into highly excited states. The largest excitation energy avail-
able to the daughter nucleus in a β-decay is given by the difference in the
masses of the nuclei involved. We showed in Sect. 3.1 that the masses of
isobars lie on a parabola. Hence the mass difference of neighbouring nuclei
inside an isobar spectrum will be particularly large if their charge number Z
sharply differs from that of the stable isobar. The highly neutron-rich nuclei
that appear as fission products in nuclear reactions are examples of this.

A lot of energy is available to the β−-decay of such nuclei. Indeed decays
into highly excited states are observed, these can in fact compete with decays
into lower levels of the daughter nucleus, despite the smaller phase space
available to the former. This is explained by observing that the proton in
the daughter nucleus occupies a state in the same shell as the neutron did in
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Fig. 17.19. Successive β−-decays of neutron rich isobars with A = 99. In a few per
cent of the decays the 99Sr and 99Y nuclides decay into highly excited states of the
daughter nuclei, from which neutrons can be emitted (from [Le78]).
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the original nucleus. One sees here how well the shell model works even for
higher nuclear excitations.

An example of this is shown in Fig. 17.19. In a few per cent of the cases
the daughter 99Y or 99Zr nucleus is so highly excited that neutron emission is
energetically allowed. Since this is a strong process it takes place “at once”.
One speaks of delayed neutron emission since it only takes place after the
β-decay, typically a few seconds after the nuclear fission.

These delayed neutrons are of great importance for reactor engineering since the
chain reaction can be steered through them. A typical nuclear reactor is made up
from fission material (such as 235U enriched uranium) and a moderator (e.g., H2O,
D2O or C). The absorption cross section for 235U is largest for neutron energies
below 1 eV. After absorbing a thermal neutron, the resulting 236U nucleus divides
up into two parts (fission) and emits, on average, 2 to 3 new fast neutrons whose
kinetic energies are typically 0.1 to 1 MeV. These neutrons are now thermalised by
the moderator and can then cause further fissions.

This cycle (neutron absorption – fission – neutron thermalisation) can lead to
a self-sustaining chain reaction. Its time constant, which depends on the reactor
design, is of the order of 1 ms. This time is much too short to control the chain
reaction which for steady operation requires the neutron multiplication factor to be
exactly equal to one. In reactor engineering therefore, the multiplication factor due
to prompt neutrons is arranged to be slightly less than one. The remainder then is
due to delayed neutrons whose time delay is typically of the order of seconds. This
fraction, which in practice determines the multiplication rate in the reactor, can be
controlled mechanically – by moving absorbing rods in and out of the reactor.

Measuring the neutrino mass. A direct measurement of the mass is
possible from the kinematics of β-decay. The form of the β-spectrum near
the end point is highly sensitive to the neutrino mass. This is best seen in a
so-called Kurie plot where

K(Ee) =

√
dN(Ee)/dEe

F (Z ′, Ee) · Ee ·
√
E2

e −m2
ec

4
(17.53)

is plotted against the electron energy Ee. dN(Ee) is the number of electrons
in the energy interval [Ee, Ee + dEe]. From (15.42) and (15.45) we have that
the distribution function K(Ee) is a straight line which cuts the abscissa at
the maximal energy E0 – provided the neutrino is massless. If this is not the
case then the curve deviates from a straight line at high Ee and crosses the
axis vertically at E0 −mνc

2 (Fig. 17.20):

K(Ee) ∝
√

(E0 −Ee)
√

(E0 − Ee)2 −m2
νc

4 . (17.54)

In order to measure the neutrino mass to a good accuracy one needs nuclei
where a finite neutrino mass would have a large impact, i.e., E0 should only be
a few keV. Since atomic effects must be taken into account at low energies, the
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Fig. 17.20. Kurie plot of the β-spectrum. If the neutrino mass is not zero the
straight line must bend near the maximum energy and cross the axis vertically at
E′

0 = E0 − mνc2.

initial and final atomic states should be as well understood as possible. The
most suitable case is the β−-decay of tritium, 3H → 3He + e− + νe, where
E0 is merely 18.6 keV. The curve crosses the E axis at E0 −mνc

2 and E0 is
determined by linearly extrapolating the curve from lower energies.

Actually carrying out such experiments is extremely difficult since the
counting rate near the maximal energy is vanishingly small. The spectrum is
furthermore smeared by the limited resolution of the spectrometer, the molec-
ular binding of the the tritium atom and the energy loss of the electrons in the
source itself. It is therefore not possible to directly measure where the curve
cuts the axis; rather one simulates the measured curve for various neutrino
masses and looks for the best agreement. The very best direct measurements
of the neutrino mass give an upper bound of 2 eV/c2 [PD00].

This upper bound for the electron-neutrino mass gains a new significance
when it is combined with the neutrino mass differences obtained in neutrino
oscillation experiments. In the β-decay experiments one measures in fact

mβ = me =
√∑

k

|Uek|2m2
k . (17.55)

Not only the mass of the electron-neutrino but also of those of the muon-
neutrino and tau-neutrino must be smaller than the measured bound.

Measuring the neutrino helicity. The so-called Goldhaber experiment
is an elegant method to measure the helicity of the νe from weak nuclear
decays [Go58]. An isomer state of the 152

63Eum (J=0) nucleus can, via K
capture, decay into a J=1 state of 152

62Sm which has an excitation energy of
0.960 MeV. This then emits a photon to enter the J =0 ground state. This
decay is a pure Gamow-Teller transition. Conservation of angular momentum
implies that the spin of the 152Sm nucleus must be parallel to that of the
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captured electron and antiparallel to that of the neutrino. Since the atomic
recoil is opposite to the momentum of the neutrino, the helicity of the excited
152Sm nucleus is equal to that of the neutrino. The emitted photon carries
the angular momentum of the nucleus. Its spin must be parallel to that of
the 152Sm nucleus before the γ was emitted. If the photon is emitted in the

recoil direction, then its helicity will be equal to
152Eu

152Sm
0+

1−

0−
that of the neutrino. To determine the neutrino’s
helicity one has then to measure the helicity of the
photon (which corresponds to a circular polarisa-
tion) and at the same time make sure that one is
only considering those photons that are emitted
in the direction of the recoiling nucleus (the op-
posite direction to that taken by the neutrino).
The experimental apparatus for this experiment

is shown in Fig. 17.21. The photons can only reach the detector if they are
resonantly scattered in a ring of Sm2O3. They are first absorbed and then
re-emitted. Resonant absorption, i.e., the reverse of electromagnetic decay,
is normally impossible in nuclear physics since the states are narrower than
the shift due to the recoil. The photons from the 152Eum source are emitted
by 152Sm nuclei that are already moving. If a nucleus is moving towards the
Sm2O3 absorber before the γ emission, then the photon has a small amount
of extra energy, which is sufficient to allow resonant absorption. In this way

Magnet

10 cm

Sm2O3
Ring Pb

Fe + Pb
Shielding

Photomultiplier

152     mEu  Source

NaI
(Tl) Fig. 17.21. Set up of the Goldhaber ex-

periment (from [Go58]). Photons from the
152Eum source are scattered in the Sm2O3

ring and detected in a NaI(Tl) scintillation
detector.
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one can fix the recoil direction of the 152Sm nucleus and hence that of the
neutrino.

The 152Eu source is inside a Fe magnet which the photons must cross to
reach the ring of Sm2O3. Some of the photons undergo Compton scattering
off the electrons in the Fe atoms. Two of the 36 electrons in the iron atom
are polarised by the magnetisation. The Compton cross-section is larger if
the electrons and photons are polarised in opposite directions. This permits
us to determine the photon polarisation by reversing the magnetic fields and
comparing the old and new counting rates.

The helicity of the neutrino was determined from this experiment as being

hνe = −1.0 ± 0.3 . (17.56)

17.7 Double β-decay

As we mentioned in Sec. 3.1 for the nuclei in the mass range A > 70 there
is often more than one β-stable isobar. The isobar with the higher mass
may, however, decay into the one with the lower mass via the double β-
decay. The straightforward two-neutrino and two-electron decays have been
observed experimentally by counter experiments and with the geochemical
method by measuring the anomalous isotope abundances of the two isotopes
in the common ore. But the main interest in the double β-decay is focused on
finding the possible neutrinoless double β-decay. Its existence or nonexistence
may give us the answer on the nature of the neutrino, whether it is a Dirac
or a Majorana particle.

Two-neutrino (2ν) double β-decay. In Sec. 3.1 we considered as a pos-
sible candidate for the double β-decay the nuclide 106

48Cd:

106
48Cd → 106

46Pd + 2e+ + 2νe .

In Fig. 17.22 we just plot the three nuclides of the A=106 isobars involved
in the double β-decay. The kinetic energy available to the leptons in the final
state is 0.728 MeV. Let us make some rough estimate of the lifetime of the
two-neutrino double β-decay. To do this it is useful to refer to section 15.5 on
neutron beta decay. In the case of double beta decay there are five particles in
the final state and the constraints of conservation of energy and momentum
leave the momentum of the four leptons unconstrained but their summed
kinetic energy must add up to the mass difference between the initial and
final states. The process is clearly second order in the weak interaction. The
formula for the neutron beta decay (15.49) must be modified in two ways. The
second order matrix element involves the product of two transitions through
intermediate states divided by the energy of the intermediate state. As there
may be more than one intermediate state, the second order matrix element
reads
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2 ] Fig. 17.22. Illustrated double β-decay pro-
cess for the three A=106 isobars. Schemati-
cally shown that the transition goes via sev-
eral excited states of the odd-odd nuclide.

∑

m

〈f, 2e+, 2νe |HW |m, e+, νe〉 〈m, e+, νe |HW | i〉
Em − Mi+Mf

2 c2
, (17.57)

where i and f represent the initial and final nuclear states and m the interme-
diate states. Let us assume the average excitation of the intermediate states
to be E0 ≈ (Mi −Mf )c2 and we can separate the nuclear matrix element in
(17.57) from the leptonic one. In order to get the lower limit of the lifetime we
assume that the sum over the intermediate nuclear states has the maximum
value, i.e., one and the matrix element reads G2

F /E0.
The phase space for two particles in the neutron decay (15.49) has to be

replaced by one for the four

(4π)2

(2π)6(�c)6
E5

0

32
→ (4π)4

(2π)12(�c)12
E11

0

2000
. (17.58)

From (17.57) and (17.58) the final result for the lifetime of the two
neutrino-beta decay is

1
τ2ν

≈ 2π
�

· G
4
F

E2
0

· (4π)4

(2π)12(�c)12
· E

11
0

2000
. (17.59)

In (17.59) we kept the factors of π’s unchanged in order to show their origin.
For E0 = 2 MeV one has τ2ν ≈ 1020 years. Experimentally the lifetimes

are of the same order.

Neutrinoless (0ν) double β-decay. The conjecture that the neutrinos
observed in the β-decay are not simple Dirac but rather Majorana particles
is supported mostly by the theorists working on the grand unified theories.
We consider this question rather as a challenge for an experimentalist. The
Majorana neutrino means the following. The neutrinos emitted in the β+ and
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β− decays are the same particles, in the β+ they have a negative helicity, in
the β− a positive. If the neutrino masses were exactly zero, there would be
no experimentally testable difference between the Dirac and the Majorana
neutrinos. But they are not massless and the double β-decay can provide
the answer to the character of the neutrino. In Fig. 17.23 a (2ν) decay is
compared to the (0ν) one. In the (2ν) decay the two protons emit each a
positron and a neutrino. In the (0ν) decay a proton emits a positron and
a left-handed Majorana neutrino. Because of the final mass the neutrino is,
with a probability (1 − βν), also right-handed and can be absorbed by a
proton thus producing the second positron.

In the case of neutrinoless double β-decay we will see that the phase space
greatly favours the (0ν) case. However, the helicity suppression for neutrino
masses below 10 eV/c2 makes its lifetime much longer than the (2ν) mode.

In order that the neutrino be emitted from one proton and subsequently
charge exchange (νe + p → n + e+) on another proton, it must possess a
Majorana component. In order that (νe = νe) and further this Majorana
component must have the opposite helicity to the standard neutrino. Thus
the normally left-handed neutrino must possess a right-handed Majorana
component, the probability for it is (1 − βν).

The (0ν) process is second-order weak, with just two leptons in the final
state. Modifying (15.49) for the (0ν) case we obtain

1
τ0ν

≈ 2π
�

· G
4
F

R4
· (4π)2

(2π)6(�c)6
· E

5
0

32
· (1 − βν). (17.60)

The 1/R4 dependence comes from two sources. One factor 1/R2 comes from
squaring the neutrino propagator. For nuclear dimensions the neutrino can be
assumed to be massless and the integration over the momenta gives the 1/R
potential like for the Coulomb case. The second 1/R2 comes from the integra-
tion over the virtual intermediate nuclear states. The uncertainty principle
fixes the neutrino momentum to be ≈ 1/R or for R = 5 fm pν ≈40 MeV/c2.
Taking the virtuality to be 40 MeV/c2 one finds (again using E0 = 2MeV)

τ0ν ≈ 4.5 · 1011 · (1 − βν)−1 ≈ 4.5 · 1011 · 2γν years. (17.61)

Fig. 17.23. Schematically shown the (2ν) and (0ν) decay. The νe turns into a νe

because of its massive Majorana character.
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One likes to compare the (2ν) and the (0ν) life-times for mν = 1 eV and
Eν = 1 MeV. For these values of the neutrino mass we have

τ0ν ≈ 3 · 1024 years, (17.62)

much longer than τ2ν . Of course as was said earlier this is just a crude estimate
and the real value could be factors of 10 different and 1 eV/c2 is certainly
an upper bound on the Majorana mass of the electron neutrino. This long
lifetime shows how difficult the search for neutrinoless double β-decay will
be.

One setup used in experiments is the well-shielded Germanium counter.
One of the Germanium isotopes, 76Ge, undergoes the double β-decay into
76Se. In Fig. 17.24, the energy spectrum of the charged particles in the dou-
ble β-decay is shown. Neutrinoless decay would demonstrate itself in the
monoenergetic line with the full energy of transition. Recently a new analysis
of the results collected in the span of ten years by the Heidelberg-Moscow
Collaboration on the double β-decay of 76Ge were published ([Kl02]). The
measurements have been performed in the Gran Sasso underground labora-
tory (1500 meters under ground) using Germanium counters enriched in 76Ge
content to 86%. At the energy of the expected total energy peak 16 events
were observed. At the same time in the continuum of the (2ν) double β-decay
113764 events were counted. From these numbers the following lifetimes of
76Ge can be deduced. For the (2ν) decay

τ2ν =
(
1.74 ± 0.01(stat)+0.18

−0.16(syst)
)
· 1021 years, (17.63)

and for the (0ν) decay

τ0ν =
(
1.5+1.68

−0.7

)
· 1025 years. (17.64)

In this experiment the estimate of the neutrino mass, in fact the Majorana-
neutrino mass, is

mν = 0.39+0.45
−0.34 eV. (17.65)

Fig. 17.24. The continuum is
due to the sum energy of the
two charged leptons in the (2ν)
decay, the monoenergetical line
with the full energy of the tran-
sition comes from the (0ν) de-
cay.
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In view of the large uncertainties in the background subtraction and very low
statistical significance of the published results of [Kl02], measurements with
statistics that are at least an order of magnitude higher would be desirable as
to conclude beyond doubt that the neutrinos are in fact Mayorana particles.

All possibilities that allow neutrinoless double β-decay require non-trivial
extensions of the standard model: massive Majorana neutrinos, right-handed
coupling of the weak interaction, or doubly charged Higgs particle. Any of
these possibilities would illuminate the path to the goal for a grand unified
theory of particle physics.

Problems
1. Fermi gas model

Calculate the dependence of the Fermi pressure upon the nuclear density. How
large is this pressure for a density N = 0.17 nucleons/fm3? What is this in
macroscopic units (bar)?

2. Shell model

a) In the following table we present the experimentally determined spins and
parities of the ground states and first excited states of some nuclei:

7
3Li 23

11Na 33
16S

41
21Sc 83

36Kr 93
41Nb

JP
0 3/2− 3/2+ 3/2+ 7/2− 9/2+ 9/2+

JP
1 1/2− 5/2+ 1/2+ 3/2+ 7/2+ 1/2−

Find the configurations of the protons and neutrons in the incomplete shells
of the one-particle shell model for these nuclei and predict the quantum
numbers of their ground states and first excited levels. Compare your results
with the table.

b) The spins of odd-odd nuclei are generally given by a vector addition of the
total angular momenta of the two unpaired nucleons. Which possible nuclear
spins and parities should 6

3Li and 40
19K have? Experimentally these nuclei have

the quantum numbers 1+ and 4−.

3. Shell model

a) Find the gap between the 1p1/2 und 1d5/2 neutron shells for nuclei with mass
number A ≈ 16 from the total binding energy of the 15O (111.9556 MeV),
16O (127.6193 MeV) and 17O (131.7627 MeV) atoms [AM93].

b) How does this agree with the energy of the first excited level of 16O (cf.
Fig. 17.7)?

c) What information does one obtain from the energy of the corresponding state
of 17O?

d) How do you interpret the difference in the total binding energies of 17O und
17F? Estimate the radius of these nuclei.

e) The first excited state of 17F is below the equivalent state of 17O. A possible
explanation of this is that the unpaired nucleon has a different spatial ex-
tension (smaller?, larger?) in the first excited state than in the ground state.
What do you expect from considering the quantum numbers?
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4. Shell model
It is conspicuous that many of the nuclei which possess long lived isomer states
have N or Z in the ranges 39 · · · 49 and 69 · · · 81 [Fe49, No49, Go52]. Why is
this?

5. Magnetic moment
The 42

21Sc nucleus has a low lying level with JP (I) = 7+(0) and an excitation
energy of 618 keV.
a) Which shell model configuration would you assign this state to?
b) What magnetic moment would you expect?

6. The Goldhaber experiment
152Sm possesses a state with excitation energy 0.963 MeV and quantum numbers
1− which decays via an E1 transition into the ground state.
a) How large is the recoil energy of the nucleus?
b) Compare this energy with the width of the state which is equivalent to an E1

one particle transition probability. Can a so-emitted photon be absorbed by
another nucleus? What happens is we take the influence of thermal motion
into account?

c) Show that this energy loss is compensated if the excited 152Sm nucleus was
produced in an electron capture decay of 152Eu and the photon was emitted
in the recoil direction of the 152Sm nucleus.
The energy of the emitted neutrino is 0.950 MeV.

7. Coupling strength of β-decay
A maximal energy of Emax

kin = 1810.6 ± 1.5 keV is measured in the β-decay
14O → 14N + e+ + νe (Fig. 2.6) [EL92, Wi78]. A phase space function f(Z′, E0)
of 43.398 is calculated from this [Wi74]. What half-life should 14O have? The
experimental value is t1/2 = 70 606 ± 18 ms [Wi78].
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We showed in Sect. 17.3 that the nuclear ground states may be well described
if we assume that the nucleons are in the lowest shell model orbits. The single
particle picture, we further showed for the case of a single valence nucleon
or nucleon hole, works very well if shells are nearly full or empty. Excited
states are then understood as being created by a valence nucleon jumping
into a higher shell model state; a direct analogy to our picture of the atom.
As well as such straightforward single particle excitations, more complicated
phenomena can take place in the nucleus. Collective excitations provide some
of the most beautiful aspects of nuclear dynamics.

Collective excitations of many body systems can be phenomenologically
understood as fluctuations around a state of equilibrium. These may be fluc-
tuations in the density or shape. The type of collective excitation strongly
depends upon the composition of the system and the manner in which its
components interact with each other. We want now to show the connection
between nuclear collective excitations and the forces inside and the structure
of the nucleus.

Electromagnetic transitions provide us with the most elegant way to in-
vestigate collective excitations in nuclei. We will therefore first consider how
electromagnetic transitions in nuclei may be determined, so that we can then
say to what extent collective effects are responsible for these transitions.

The first measurements of photon absorption in nuclei led to the discov-
ery that the lion’s share of the the absorption is by a single state. The first
description of this giant dipole resonance state was of an oscillation of the pro-
tons and neutrons with respect to each other. Later on it was discovered that
the transition probability for electric quadrupole transitions of lower energy
states was much higher than a single particle picture of the nucleus predicts.
The transition probability for octupole transitions also predominantly comes
from single states which we call octupole vibrations.

The single particle and collective properties of nuclei were regarded for
a long time as distinct phenomena. A unified picture first appeared in the
1970’s. We want to illustrate this modern framework through the example
of giant dipole resonances. What we will discover can be easily extended to
quadrupole and octupole oscillations.

Another important collective effect is the rotation of deformed nuclei.
Such rotations form a most pleasing chapter, both didactically and aestheti-
cally, in the story of γ spectroscopy.



286 18 Collective Nuclear Excitations

18.1 Electromagnetic Transitions

Electric dipole transitions. The probability of an electric dipole transition
can be somewhat simplistically derived by considering a classical Hertz dipole.
The power output emitted by the dipole is proportional to ω4. The rate of
photon emission, i.e., the transition probability, may be obtained by dividing
the power output by the photon energy �ω. One so finds

Wfi =
1
τ

=
e2

3πε0�4c3
E3

γ

∣
∣
∣
∣

∫
d3x ψ∗f xψi

∣
∣
∣
∣

2

, (18.1)

where we have replaced the classical dipole ex by the matrix element. This
result may also be obtained directly from quantum mechanics.

In the following derivation we want to treat the electromagnetic transitions
semiclassically, i.e., we will not concern ourselves with quantising the radiation
field or spin.

Consider first an excited nuclear state ψi which through γ emission enters a
lower lying state, ψf . The golden rule says that the transition probability is

dW =
2π

�
|〈ψf |Hint|ψi〉|2 d(E) . (18.2)

Hint describes the interaction of the moving charge with the electromagnetic field
and (E) is a phase space factor that describes the final state density at total
energy E. For photon emission we have E = Eγ . Since γ radiation is generally not
spherically symmetric, we consider the phase space in a solid angle element dΩ
around the momentum vector. As in (4.16) we set

d(E) =
V |p|2 d|p| dΩ

(2π�)3 dE
. (18.3)

For the photon we have E = c · |p| and dE = c · d|p|, which implies

d(E) =
E2

γ V dΩ

(2π�c)3
. (18.4)

The Hint operator can be obtained by considering the classical Hamiltonian for
the interaction between a charge e, which emits the photon, and the electromagnetic
field A = (φ/c, A) [Sc95]:

H =
1

2m
(p − eA)2 + eφ. (18.5)

Note that we have here assumed a point-like charge. The term quadratic in A is
negligible and we may write

H =
p2

2m
− e

m
pA + eφ . (18.6)
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The first term corresponds to free movement of the charged particle and the last
two describe the interaction

Hint = − e

m
pA + eφ , (18.7)

which, for a point-like particle, is just given by the scalar product of the electric
four-current

j = (e · c, ev) (18.8)

and the electromagnetic field
A = (φ/c, A) . (18.9)

In an electromagnetic decay eφ does not contribute to the transition probability,
since real photons are transversely polarised and monopole transitions are hence
forbidden.

If one replaces the momentum p by the operator p = −i�∇ and interprets the
vector A as the wave function of the photon, one obtains the matrix element

〈ψf |Hint|ψi〉 = − ie�

m

∫
d3x ψ∗f

(
∇ψi

)
A . (18.10)

The gradient ∇ may be replaced by the commutator of the coordinate x with the
Hamilton operator, since for stationary states

H0 =
p2

2m
+ V (x) (18.11)

we have the following relation:

xH0 −H0 x =
i�

m
p =

�
2

m
∇. (18.12)

In this way we have

− ie

�

∫
d3x ψ∗f (xH0 −H0x) ψi A =

ie

�
(Ei − Ef )

∫
d3x ψ∗f x ψi A , (18.13)

and the matrix element has the standard form for multipole radiation.
In the semiclassical derivation of γ emission, one writes the photon wave func-

tion as

A =

√
�

2ε0ωV
ε cos(kx − ωt) , (18.14)

where ε is the polarisation vector of the photon, Eγ = �ω is its energy and k the
wave vector. That this is indeed correct may be easily checked by calculating the
electromagnetic radiation energy in a volume V using A from (18.14):

�ω = V ·
(

1

2
ε0E

2 +
1

2

1

μ0
B2

)
= V ε0E

2 with E = −∂A

∂t
, (18.15)

where the bar represents time averaging. With this result we now may write the
transition probability as:

dWfi =
2π

�

�

2ε0 ωV

e2E2
γ

�2

∣
∣∣
∣ ε

∫
d3x ψ∗f xψi eikx

∣
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∣

2 E2
γV dΩ
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=
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8π2ε0�4c3
E3

γ

∣
∣
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∫
d3x ψ∗f x eikxψi

∣
∣
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2

dΩ . (18.16)
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The wavelengths of the gamma rays are large compared to a nuclear radius.
The multipole expansion

eikx = 1 + ikx + · · · (18.17)

is very useful, since, generally speaking, only the lowest transition that the quantum
numbers allow needs to be taken into account. Only very occasionally are two
multipoles of equal strength in a transition. If one now sets eikx ≈ 1, integrates
(18.16) over the solid angle dΩ and the polarisation one obtains (18.1).

Electric dipole (E1) transitions always connect states with different parities.
The photon carries away angular momentum |�| = 1� and so the angular
momenta of the initial and final states may at most differ by one unit.

Since transitions from one shell into the one immediately above play the
most important role in collective excitations, we now introduce the standard
notation for the wave function. A closed shell shall be denoted by the symbol
|0〉 (“vacuum wave function”). If a particle in the state φj1 of the closed shell
jumps into the state φj2 of the next shell a particle-hole state is created,
which we symbolise by |φ−1

j1
φj2

〉. The dipole matrix element

〈φ−1
j1
φj2 |ex|0〉 = e

∫
d3x φ∗j2xφj1 (18.18)

describes the transition of a nucleon from the state φj1 to the state φj2 . Since
|0〉 is a full shell state it must have spin and parity JP = 0+, hence the
excited particle-hole state after the electric dipole transition must have the
quantum numbers JP = 1−.

Magnetic dipole transitions. The transition probability of a magnetic
dipole (M1) transition is obtained by replacing the electric dipole in (18.1)
by a magnetic one:

Wfi =
1
τ

=
μ0

3π�4c3
E3

γ

∣
∣
∣
∣

∫
d3x ψ∗f μψi

∣
∣
∣
∣

2

where μ =
e

2m
(L + gs) .

(18.19)
Here L is the orbital angular momentum operator and s is the spin operator.

Higher multipoles. If the electric dipole transition is forbidden, in other
words if both states have the same parity or the vectorial addition of the
angular momenta is inconsistent, then only higher multipole radiation can be
emitted. The next highest multipoles in the transition probability hierarchy
are the above magnetic dipole (M1) transition and the electric quadrupole
(E2) transition [Fe53]. Both are second order in the expansion (18.17). The
parity of the initial and final states must be identical in electric quadrupole
transitions and the triangle inequality |jf − ji| ≤ 2 ≤ jf + ji must be fulfilled
by the angular momenta. While the transition probability for dipole radiation
is, from (18.1), proportional to E3

γ , for electric quadrupole radiation it goes
as E5

γ . This is because there is a new factor of ikx in the matrix element and
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|k| is proportional to Eγ . The energy-independent part of the matrix element
has the form r2Y m

2 (θ, ϕ).

18.2 Dipole Oscillations

Photon absorption in nuclei. A broad resonance, which was already
known in the 1950’s, dominates the absorption of gamma rays by nuclei. The
experimental techniques for investigating this resonance were rather awkward
since no variable energy gamma sources existed.

The method of in flight positron annihilation, which was developed in the
1960’s, first permitted detailed measurements of the gamma cross-sections.
Positrons, which have been produced through pair creation from a strong
bremsstrahlung source, are selected according to their energy and focused
upon a target. They then partially annihilate with the target electrons and
produce bremsstrahlung as an unwanted by-product (Fig. 18.1).

Such a gamma spectrum is shown in Fig. 18.2. A peak can be clearly
distinguished from the bremsstrahlung at the maximal possible energy and
this is presumed to come from the e+e− annihilation. The energy dependence
of γ-induced cross-sections can be thoroughly investigated by varying the
energy of the positrons. As well as the total cross-section, the cross-section
for the photoproduction of neutrons (nuclear photoeffect)

AX (γ,n) A−1X (18.20)

Electron beam
Q0 Q1Q2 T1 Q3Q4 M1

M2

ES M3

Q5
Q6

T2
M4

C

D

S

Photons

Positrons

Fig. 18.1. Experimental set up for in flight positron annihilation (from [Be75]). An
electron beam hits a target (T1). The bremsstrahlung that is produced converts into
electron-positron pairs. The positrons are then selected according to their energy
by three dipole magnets (M1, M2, M3) before hitting a second target (T2). Some
of them annihilate in flight with target electrons. A further magnet (M4) deflects
all charged particles and only photons arrive at the experimenter’s real target (S).
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Fig. 18.2. The photon spectrum
from in-flight electron positron anni-
hilation [Be75]. This is later used for
(γ, n) reactions. The background of
bremsstrahlung from positrons hitting
the target is determined by aiming a
mono-energetic beam of electrons at
the target. The cross-section for fixed
photon energies is found by performing
experiments with the two different pho-
ton beams and subtracting the count-
ing rates.

is of especial importance. This is in fact the major part of the total cross-
section. The photoproduction of protons is, by contrast, suppressed by the
Coulomb barrier. In what follows we will limit ourselves to the (γ,n) reaction.

We have chosen σ(γ,n) for neodymium isotopes as an example (Fig. 18.3).
Various observations may be made.

– The absorption probability is centred in a resonance which we call a giant
resonance.

– The excitation energy of the giant resonance is roughly twice the separation
between neighbouring shells. This is astounding since, for reasons of parity
and angular momentum conservation, many more single particle transitions
are possible between one shell and the next than between a shell and the
next but one.

– While a narrow resonance is observed in absorption by 142Nd, this splits
into two resonances as the mass number increases.

– The integrated cross-section is about as big as the sum over all expected
cross-sections for the transition of a single nucleon from the last closed
shell. This means that all the protons and neutrons of the outermost shell
contribute coherently to this resonance.
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Fig. 18.3. Cross-section for γ-induced emission of neutrons in neodymium isotopes
[Be75]. The curves have been shifted vertically for the sake of clarity. Neodymium
isotopes progress from being spherically symmetric to being deformed nuclei. The
giant resonance of the spherically symmetric 142Nd nucleus is narrow, while that of
the deformed 150Nd nucleus shows a double peak.

A qualitative explanation of the giant resonances comes from the oscil-
lation of protons and neutrons with respect to each other (Fig. 18.4). The
150Nd is deformed and has a cigar-like shape. The two maxima for this nu-
cleus correspond to oscillations along the symmetry axis (lower peak) and
orthogonal to it (higher peak).

We will attempt to justify this intuitive picture of giant resonances and
their excitation energies in the framework of the shell model.

The giant dipole resonance. Consider once again the example of the
doubly magic 16O nucleus. B Let us assume that photon absorption leads to
a nucleon in the 1p3/2 or 1p1/2 shell being promoted into the 1d5/2, 1d3/2

or 2s1/2 shell. If this nucleon drops back into the 1p shell, it can pass on
its excitation energy through recoils to other nucleons, which may then, for
example, be themselves excited out of the 1p shell into the 1d or 2s shell.
If the nuclear states that are produced by the excitation of a nucleon into a
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higher level were degenerate, then the probability of generating all of these
states must be equal and a simple single particle picture would be doomed
to failure from the start. In reality this is almost the case; the excited states
are almost degenerate.

One can understand these states as a combination of a hole in the remain-
ing nucleus and a particle in a higher shell, and the interaction between the
particle and all the nucleons of the now incomplete shell may be viewed as an
interaction between the particle and the hole. This interaction depends upon
the spin and isospin of the particle-hole system and causes the states to mix
strongly. Below we want to use a greatly simplified model to show how the
transition strengths of all one particle-one hole states combine through this
mixing into a single state.

We use H0 to denote the Hamiltonian operator of a nucleon in the central
potential of the single particle shell model. In the transition of the parti-
cle from a full shell to the one above, we must also take the particle-hole
interaction into account; the Hamiltonian operator must then be written as

H = H0 + V . (18.21)

Collective excitations appear just because of the mixing generated by this
particle-hole interaction, V.

Consider now all particle-hole states with 1− spin and parity. These can
only be particle-hole combinations such that the angular momenta j1 and j2

add vectorially to 1� and the sum of the orbital angular momentum quantum
numbers �1 +�2 is odd (so that the parity is negative). If we restrict ourselves
to the excitation of a nucleon from the 1p into the 1d or 2s shell, then we
have the following possible particle-hole states:

∣
∣
∣φ−1

1p3/2
φ1d5/2

〉
,
∣
∣
∣φ−1

1p3/2
φ2s1/2

〉
,
∣
∣
∣φ−1

1p3/2
φ1d3/2

〉
,

∣
∣
∣φ−1

1p1/2
φ2s1/2

〉
,
∣
∣
∣φ−1

1p1/2
φ1d3/2

〉
.

Since both the proton and neutron shells are full in the 16O nucleus,
such states exist for both proton and neutron excitations. They have all got
roughly the same energy and may be viewed as approximately degenerate.

E
Protons

Neutrons

r = r0e iωt

hω

Fig. 18.4. The giant dipole
resonance as oscillations of the
protons and neutrons against
each other. In deformed nuclei
(below) two oscillation modes
are available.
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The number of nucleons per shell is larger in heavy nuclei, and the number
of nearly degenerate particle-hole JP = 1− states is accordingly greater. N ,
the number of particle-hole states is between 10 to 20 for medium sized nuclei.

The connection between one particle and collective excitation can be clar-
ified by a simple model [Br67]. We denote particle-hole states by |ψi〉:

|ψi〉 =
∣
∣φ−1

j1
φj2

〉
where i = 1 · · ·N . (18.22)

The |ψi〉 are, by definition, eigenstates of the unperturbed Hamiltonian

H0 |ψi〉 = Ei |ψi〉 . (18.23)

The solution to the Schrödinger equation with the full Hamiltonian operator

H |Ψ〉 = (H0 + V) |Ψ〉 = E |Ψ〉 , (18.24)

is |Ψ〉. This wave function |Ψ〉 projected out upon the space spanned by |ψi〉
in (18.22) may be written as

|Ψ〉 =
N∑

i=1

ci |ψi〉 (18.25)

where the coefficients ci fulfill the secular equation
⎛

⎜
⎜
⎜
⎝

E1 + V11 V12 V13 · · ·
V21 E2 + V22 V23 · · ·
V31 V32 E3 + V33 · · ·
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

c1
c2
c3
...

⎞

⎟
⎟
⎟
⎠

= E ·

⎛

⎜
⎜
⎜
⎝

c1
c2
c3
...

⎞

⎟
⎟
⎟
⎠
. (18.26)

We assume for simplicity that all the Vij are the same

〈ψi|V |ψj〉 = Vij = V0 . (18.27)

The solution of the secular equation is then rather simple: the coefficients ci
may be written as

ci =
V0

E − Ei

N∑

j=1

cj , (18.28)

where
∑

j cj is a constant. Summing over all N particle-hole states on both
sides and bearing in mind that

∑
i ci =

∑
j cj , we obtain the relation

1 =
N∑

i=1

V0

E − Ei
, (18.29)

as the solution of the secular equation.
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Fig. 18.5. Graphical representation of the solution to the secular equation (18.26)
and a picture of how the energy levels are shifted.

The solutions of this equation are most easily understood graphically
(Fig. 18.5). The right hand side of the equation has poles at E = Ei where
i = 1 . . . N . The solutions E′

i to (18.29) are to be found where the right hand
side is unity. The new energies are marked by circles on the abscissa. N−1
eigenvalues (3 in the diagram) are “squeezed in” between the unperturbed
energies E1 . . . En. The exception, denoted by EC, is the collective state, as
we will show in the following. A repulsive (V0 > 0) interaction, as is assumed
in the diagram, has its collective state above the particle-hole state.

To obtain a quantitative estimate of the energy shift, we now assume that
Ei = E0 for all i. Equation (18.29) then becomes

1 =
N∑

i=1

V0

EC − Ei
=

NV0

EC − E0
, (18.30)

from which
EC = E0 +N · V0 (18.31)

follows. The energy shift of the collective state is proportional to the number
of degenerate states. From experiment we know that the energy of the giant
resonance is roughly twice the separation between two shells, i.e., N ·V0 ≈ E0.
The effective interaction decreases for heavier nuclei but this is compensated
by the increased number of states which can enter the collective motion.

The expansion coefficients for the collective state

c
(C)
i =

V0

EC − Ei

∑

j

c
(C)
j (18.32)

are nearly independent of i so long as the energy of the collective state EC

is well separated from the Ei. The collective state has the following configu-
ration:
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|ψC〉 =
1√
N

∑

jijk

∣
∣φ−1

ji
φjk

〉
. (18.33)

This state is singled out by the fact that the amplitudes of each and every
particle-hole state add with the same sign (constructively), since EC > Ei

for all i. For the other N−1 diagonal states only one of the cj is large and the
others are small and have different signs. The superposition of the amplitudes
is therefore destructive. The coherent superposition of the amplitudes means
that the transition probability is large for the collective case and otherwise
small as we will show in what follows.

If we do not assume as in (18.27) that all the Vij are equal, then the
calculation becomes more tedious but the general conclusion remains the
same: as long as the Vij are of the same order of magnitude the highest state
is shifted well above the others and manifests itself as a coherent sum of all
the particle-hole states.

Estimating the transition probability. The operator for the electric
dipole transition is

D = e

Z∑

p=1

xp , (18.34)

where xp is the coordinate of a proton. This must be modified slightly, since
it is not yet clear which coordinate system xp refers to. The most natural
coordinate system is the centre of mass system and we therefore write B

D = e

Z∑

p=1

(xp − X) where X =
1
A

(
Z∑

p=1

xp +
N∑

n=1

xn

)

. (18.35)

This may be recast as

D = e
N

A

Z∑

p=1

xp − eZ
A

N∑

n=1

xn . (18.36)

We interpret this expression as meaning that

ep = +eN/A is the effective proton charge and
en = −eZ/A is the effective neutron charge.

(18.37)

A photon “pulls” the protons in one direction and the neutrons in the
opposite one. The neutrons and protons always move oppositely to each other
under the influence of the photon in such a way that the centre of mass stays
in the same place.

If we replace ψi and ψf in (18.1) by the nucleon wave functions in the one
particle shell model before and after the γ emission, we find the so-called one
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particle transition probability. This, weighted with the square of the effective
charge, may be used to estimate the collective nature of transitions.

We need to use the wave function (18.33) to calculate the matrix element

Mfi =
∫

d3x ψ∗f Dz ψi (18.38)

where Dz is the z component of the dipole operator (18.34), if we want
to calculate the transition probability. In our case ψi is just |0〉, the wave
function of the ground state with closed shells and ψf is (18.33) the wave
function of the collective excitation. Thus we have

MC0 =
1√
N

∫
d3x

{〈
φ−1

ji
φjk

∣
∣ +

〈
φ−1

jl
φjm

∣
∣ + · · ·

}
Dz

∣
∣
∣ 0

〉
. (18.39)

The matrix element between the ground state and the particle-hole exci-
tation can be identified with the dipole transition of a particle from a closed
shell into a higher one. The integrals

An =
∫

d3xφ∗jk
Dzφji

(18.40)

represent the amplitude for the transition of a particle from the ji shell into
the jk one. Here n is an index which denotes each of the total N particle-hole
states. The phases of the transition amplitudes An that contribute to the
collective state are the phases of the differences of the magnetic substates. In
the square of the amplitudes an equal number of mixed terms with positive
and negative signs occur; they therefore average out to zero. If we assume for
simplicity that the moduli |An| are also identical, then the squared matrix
element becomes

|MC0|2 =
1
N

∣
∣
∣
∣
∣

N∑

n=1

An

∣
∣
∣
∣
∣

2

=
N2

N
· |A|2 = N · |M1 particle|2 . (18.41)

The transition probabilities are then rearranged. Because the states mix,
we no longer have N different states each excited with probability |A|2, but
rather the total transition probability N |A|2 is taken up by the collective
state.

These ideas apply equally to both protons and neutrons. But, since the
proton and neutron effective charges (18.37) are of opposite signs, protons
and neutrons oscillate inside the nucleus with opposite phases. This is the
semiclassical interpretation of the giant dipole resonance.1 The oscillation in

1 There is an attractive analogy to the giant dipole resonance in plasma physics:
electromagnetic radiation directed at a plasma is absorbed over a broad band
around the so-called plasma frequency. At this frequency the totality of the free
electrons oscillate against the ions.
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deformed nuclei can take place along or orthogonal to the symmetry axis.
This leads to two peaks in the excitation curve, as is seen in Fig. 18.3 for the
case of 150Nd.

This treatment of the collective dipole resonance in a shell model, where
we limited ourselves to just a few particle-hole states and then actually only
solved it schematically, explains why the dipole transition strength is essen-
tially restricted to one state. The resonance lies above the neutron threshold,
i.e., in the continuum, and primarily mixes with neutron scattering states.
Thus the cross-section for photon absorption displays a broad structure in-
stead of a narrow state.

18.3 Shape Oscillations

Quadrupole oscillations. Other nuclear collective states have also been
observed in experiments. To keep things simple, we will limit ourselves in
what follows to doubly even nuclei. Their ground and first excited states
always have quantum numbers JP = 0+ and JP = 2+, with the exception
of doubly magic nuclei and a very few others (Figs. 17.5 and 18.6). The
simplest explanation for these excited levels would be that a nucleon pair
has been broken apart to produce the second lowest energy level, JP = 2+.
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Fig. 18.6. Energy levels of three simply magic even-even nuclei, 18O, 44Ca and
206Pb (left), and three doubly magic ones, 16O, 40Ca and 208Pb (right). The excited
states in the first case have JP = 2+. This state is lacking in the three doubly
magic nuclei, which instead have a lower lying 3− state. The transition probability
into the ground state is high compared with what we would expect from a single
particle excitation. These states are interpreted as collective quadrupole or octupole
vibrations.
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1− ΔΙ = 1
2+ ΔΙ = 0

2+ ΔΙ = 0

3− ΔΙ = 0

0+

Fig. 18.7. Collective excitations in the framework of the shell model. Shape os-
cillations are denoted by ΔI = 0. Those collective states where the protons and
neutrons oscillate in phase are shifted downwards. States where they oscillate with
opposite phases (ΔI = 1) are pushed up to higher energies. Shells below the Fermi
energy EF are occupied by nucleons. The ground state lies at a position below the
single particle excitations given by the pairing energy.

Measurements of the lifetimes of such states show, however, that the transi-
tion probability for the electric quadrupole transition is up to two orders of
magnitude more than a one particle transition would suggest. The lowest 2+

states are in fact, for nuclei with enough particles outside closed shells, our
first encounter with the ground state rotation band which we will treat in
Sect. 18.4. If the configuration has only a few particles outside closed shells,
then we describe these states as oscillations of the geometric shape of the
nucleus around its equilibrium form, which last is approximately spherically
symmetric. For such 2+ states it seems likely that these vibrations are of the
quadrupole type (Fig. 18.8a).

Near the giant dipole resonance, and so at much higher excitation energies,
further collective states with JP = 2+ are observed in electron scattering.
These are called giant quadrupole resonances.

This illustrative discussion of quadrupole oscillations needs to be ex-
plained, in a similar fashion to our treatment of the giant dipole resonance,
in terms of the shell model and the nature of the nuclear force. In a sin-
gle particle picture collective excitations only arise if the particles in a shell
are excited with correlated phases. For the giant dipole resonances we saw
that this took place through coherent addition of all particle-hole excitations.
To now create JP = 2+ states we need to either promote one particle into
the next shell but one, or into the next level inside the same shell. This is
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a) b)

Fig. 18.8. (a) Quadrupole vibrations; (b) Octupole vibrations.

a consequence of the spin and parity of the shell states. Shells below 48Ca
have alternating +1 and −1 parity and in heavier nuclei at least states with
similar j will have opposite parities in successive shells. The particle-hole
states are in this case nearly degenerate which can lead to collective states.
Exciting particles inside the same shell leads to low lying quadrupole vibra-
tions, exciting them into the next shell but one generates giant quadrupole
resonances.

While the semiclassical picture of a giant dipole resonance has the protons
and neutrons oscillating against each other, the protons and neutrons in
nuclear quadrupole oscillations can move either with the same or opposite
phase. If they move in phase the isospin is unchanged, if oppositely it is
changed by unity. We will only consider the first case here. The interaction
between particle-hole states which causes this in-phase motion is, obviously,
of an attractive type. If we were to solve the secular equation for a collective
2+ state, we would see that the attractive interaction shifts the energy levels
downwards. The lowest energy state is built up out of a coherent superposition
of particle-hole states with JP = 2+ and is collectively shifted down.

The various collective excitations in the framework of the shell model are
depicted in Fig. 18.7. The giant quadrupole resonance splits into two parts.
That with ΔI = 1, which comes from proton-neutron repulsion, is, simi-
larly to the giant dipole resonance, shifted up to higher energies. The giant
quadrupole resonance which has ΔI = 0 corresponds to shape oscillations
and is shifted down. In both cases, however, the shift is smaller than was the
case for the giant dipole resonance, which implies that the collective nature
of these excitations is less pronounced. This may be explained as follows: the
one particle-one hole excitations which build up the giant dipole resonance
can only, for reasons of energy, enter a few other states, which themselves are
one particle-one hole excitations in the same shell combinations. This state
made up of single particle-hole excitations is thus long lived and displays a
strongly coherent nature. This is all no longer true for excitations into the
next shell but one, such as those which comprise the quadrupole resonance.
The single particle-hole excitations of the next shell but one can decay into
two-particle-hole states. Hence they have shorter lifetimes, are less coherent
and less collective.
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If the protons and neutrons move in phase this appears as a change in the
shape of the nucleus. This alteration can hardly be quantitatively described
in the shell model, since its particle wave functions were obtained using a
spherically symmetric potential. Shape oscillations change the form of the
potential and the nucleonic motion has to alter itself accordingly. Quanti-
tative treatments of nuclei with large quadrupole oscillations are then of a
hybrid form, where the total wave function has both vibrational and single
particle parts.

Octupole oscillations. Nuclei with doubly closed shells, like 16O, 40Ca and
208Pb, possess a low-lying 3− state (Fig. 18.6) whose transition probability
can be up to two orders of magnitude higher than the single particle predic-
tion. This state can be interpreted as an octupole vibration (Fig. 18.8b). The
collective 3− states can, like the giant dipole resonance, be built up out of
particle-hole excitations in neighbouring shells. Since the protons and neu-
trons oscillate in phase in such shape vibrations, the particle-hole interaction
must be attractive. The collective octupole excitations are shifted to lower
energies.

Summary. The picture of collective excitations which we have here at-
tempted to explain is the following: since the shell energies in the nucleus
are distinctly separated from each other, those particle-hole states which are
created when a nucleon is excited into a higher shell are nearly degenerate.
Coherent superposition of these particle-hole states then form a collective
excitation. Shape oscillations can be interpreted as coherent superpositions
of the movement of single particles, but a quantitative description is only
possible in terms of collective variables.

18.4 Rotation States

Nuclei with sufficiently many nucleons outside of closed shells display a char-
acteristic excitation pattern: a series of states with increasing total angular
momentum, the separation between whose energies increases linearly. These
excitations are interpreted as corresponding to the nucleus rotating and,
in analogy to molecular physics, the series are called rotation bands. Elec-
tric quadrupole transitions between the states of a rotation band display a
markedly collective nature. The excitation pattern, and also the collective
character of the quadrupole transitions, are understood as consequences of
these nuclei being highly deformed [Bo53]. Generally speaking the spin of the
nuclear ground state is coupled to the angular momentum of the collective
excitations. We will bypass this complication by only considering even-even
nuclei, since these have spin zero in the ground state.

Rotational energy in classical mechanics depends upon the angular mo-
mentum J and the moment of inertia Θ:
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Erot =
|J rot|2

2Θ
. (18.42)

In quantum mechanics rotation is described by a Hamiltonian operator

Hrot =
J2

2Θ
. (18.43)

In such a quantum mechanical system the rotation must be perpendicular to
the symmetry axis. The eigenstates of the angular momentum operator J are
the spherical harmonic functions Y m

J , which describe the angular distribution
of the wave function. The associated eigenvalues are:

EJ = J(J + 1)
�

2

2Θ
. (18.44)

The gaps between successive states increase linearly because of EJ+1 −EJ =
2(J + 1)�2/2Θ. This is typical of rotating states. Only even values of J are
attainable, for reasons of symmetry, for those nuclei which have JP = 0+ in
the ground state. The moment of inertia Θ can be found from the spins and
excitation energies.

We want to discuss the experimental data through two examples which we
have chosen out of the range of masses where highly deformed nuclei occur:
the lanthanides and the actinides.

Coulomb excitation. Coulomb excitations in heavy ion reactions are often
used to produce highly excited rotating states. To ensure that the interaction
only takes place via Coulomb excitation, both partners must remain further
apart than the range of the nuclear force. The projectile energy must then
be so chosen that the Coulomb threshold

EC =
Z1Z2e

2

4πε0
1

R1 +R2
=
Z1Z2α · �c
R1 +R2

(18.45)

of the partners is not crossed. Larger values for the radii R1 and R2 of the
reacting particles than in (5.56), say R = 1.68 fm ·A1/3 are then assumed to
make sure that the tails of the nuclear wave functions do not have any effects
[Ch73].

Consider now the example of the Coulomb scattering of a 90
40Zr projectile

off a 232
90Th target nucleus. The 90Zr ion is accelerated in a tandem Van de

Graaff accelerator up to a kinetic energy of EZr = 415 MeV. The centre of
mass energy which is then available to the colliding particles is

Ecm =
ATh

AZr +ATh
EZr ≈ 299 MeV. (18.46)

If we insert the charge numbers and radii of these two nuclei into (18.45),
we find that EC ≈ 300 MeV. The centre of mass energy is, in other words,
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Fig. 18.9. (a) Kinematics of a heavy ion collision (here 90Zr+232Th). The projectile
follows a hyperbolic orbit in the Coulomb field of the target nucleus. (b) Sketch of
multiple Coulomb excitation of a rotation band. Successive quadrupole excitations
lead to the 2+, 4+, 6+, 8+, . . . states being populated (with decreasing intensity).

just below where the first non-electromagnetic effects would make themselves
felt.

The 90Zr projectile nucleus follows a hyperbolic path in the field of the
target nucleus (Fig. 18.9a) and exposes the 232Th nucleus to a rapidly chang-
ing electric field. The path of the ion is so sharply curved that frequencies
in the time dependent electric field are generated that are high enough to
produce individual excitations with energies up to about 1 MeV.

There is not just a quantitative but also a qualitative difference between
Coulomb excitation and electron scattering off nuclei:

– The principal distinction is that the interaction is much stronger with a
projectile charge which is Z times that of the electron. One must replace
α by Zα in the matrix element (5.31). This means that the cross-section
increases as Z2.

– If we are not to cross the Coulomb threshold, the projectile energy must
be so low that its velocity obeys v <∼ 0.05 c. Magnetic forces are hence of
little importance.

– The ion orbit may be calculated classically, even for inelastic collisions. The
kinetic energy of the projectile in Coulomb excitation changes by less than
1 % and thus its path is practically the same. The frequency distribution of
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Fig. 18.10. Photon spectrum of a Coulomb excited 232Th nucleus. Three series
of matching lines may be seen. The strongest lines correspond to transitions in
the ground state rotation band Jg → (J − 2)g. The other two bands are strongly
suppressed and are the results of excited states (cf. Fig. 18.12) [Ko88].

the virtual photons is very well known and the transition amplitudes can
be worked out to a high degree of accuracy.

The large coupling strength means that successive excitation from one
level to the next is now possible. This is sketched in Fig. 18.9b: the quadrupole
excitation reproduces itself inside a rotation band from the 2+ state via the
4+ to the 6+.

The popularity of Coulomb excitation in gamma spectroscopy is well
founded. In such reactions we primarily produce states inside rotation bands.
The cross-sections into the excited states give us, through the transition prob-
abilities, the most important information about the collective nature of the
rotation bands. Measurements of the cross-sections into the various states si-
multaneously determine the transition probability for the electric quadrupole
transition inside the rotation band.

The introduction of germanium semiconductor detectors has marked a
very significant step forward in nuclear-gamma spectroscopy. The low energy
part of the gamma spectrum of Coulomb excitation of 232Th from scattering
with 90Zr ions is shown in Fig. 18.10. This gamma spectrum was recorded
with a Ge-semiconductor counter and a coincidence condition for the back-
wardly scattered 90Zr ions, which were measured with a Si-semiconductor
detector (Fig. 18.11).

Excellent energy resolution makes it possible to see individual transitions
inside rotation bands. Three series of lines can be recognised. The strongest
are transitions inside the ground state rotation band (Jg → (J − 2)g).
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Fig. 18.11. Experimental apparatus for investigating Coulomb excitation in heavy
ion collisions. In the example shown a 90Zr beam hits a 232Th target. The back-
wardly scattered Zr projectiles are detected in a silicon detector. A germanium de-
tector, with which the γ cascades inside the rotation bands can be finely resolved,
gives a precise measurement of the γ spectrum. These photons are additionally
measured by a crystal ball of NaI crystals with a poorer resolution. A coincidence
condition between the silicon detector and the NaI crystals can be used to single
out an energy window inside which one may study the nuclear rotation states with
the germanium detector (from [Ko88]).

According to (18.42) these lines should be equidistantly spaced out. This is
only approximately the case. This may be explained by noting that the mo-
ment of inertia increases with the spin. Events with scattering angles around
180◦ are chosen because the projectile must then have got very close to the
target and then at the moment of closest approach have experienced a strong
acceleration. The virtual photon spectrum which the projectile emits con-
tains high frequencies which are important for the excitation of the high spin
states. The spectrum which emerges from this sort of measurement is shown
in Fig. 18.12: as well as the ground state rotation band, there are other ro-
tation bands which are built upon excited states. In this case the excitations
may be understood as vibratory states.

Fusion reactions. Records in high spin excitations may be obtained with
the help of fusion reactions such as

48Ca + 108Pd −→ 156Dy −→ 152Dy + 4n .

48Ca nuclei with a kinetic energy of 200 MeV can just break through the
Coulomb barrier. If the fusion process takes place when the nuclei just touch,
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Fig. 18.12. Spectrum of the 232Th nucleus. The excitation energies are in keV. As
well as the ground state rotation band, which may be excited up to JP =24+, other
rotation bands have been observed which are built upon vibrational excitations
(from [Ko88]). The quantum numbers of the vibrational states are given below the
bands. For reasons of symmetry, the only rotation states which can be constructed
upon the JP = 0− vibrational state are those with odd angular momenta.

then the 156Dy fusion product receives angular momentum

�� ≈ (R1 +R2)
√

2mE , (18.47)

where m is the reduced mass of the 48Ca–108Pd system. R1 and R2 are
of course the correct nuclear radii from (5.56). The calculation thus yields
� ≈ 180. In practice the fusion reaction only takes place if the projectile and
target overlap, so this number should be understood as an upper limit on the
accessible angular momentum. Experimentally states up to JP = 60+ have
been reached in this reaction (Fig. 18.14).
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ertia of deformed nuclei com-
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The moment of inertia. The size of the moment of inertia can with the
aid of (18.44) be extracted from the measured energy levels of the rotation
bands. The deformation δ can be obtained from the electric quadrupole ra-
diation transition probability inside the rotation band. The matrix element
for the quadrupole radiation is proportional to the quadrupole moment of
the nucleus, which, for collective states, is given by (17.40). The observed
connection between the moment of inertia and the deformation parameter is
displayed in Fig. 18.13. Note that the nuclear moments of inertia are nor-
malised to those of a rigid sphere with radius R0

Θrigid sphere =
2
5
MR2

0 . (18.48)

The moment of inertia increases with the deformation and is about half that
of a rigid sphere.2

Two extremal models are also shown in Fig. 18.13. The moment of inertia
is maximised if the deformed nucleus behaves like a rigid body. The other
limit is reached if the nucleus behaves like an irrotational liquid.

Superfluid 4He is an example of an ideal fluid, incompressible and fric-
tionless. Currents in an frictionless liquid are irrotational. A massless eggshell
filled with superfluid helium would as it rotated have the moment of inertia of
an irrotational current. Only the swelling out of the egg, and not the interior,
would contribute to the moment of inertia. The moment of inertia for such
an object is

Θ =
45δ2

16π
·Θrigid sphere , (18.49)

where δ is the deformation parameter from (17.39).
Let us return to the example of the 232Th nucleus. The transition prob-

abilities yield a deformation parameter of δ = 0.25. If the rotation of the

2 The comparison with a rigid sphere is, of course, purely classical; a spherically
symmetric quantum mechanical system cannot rotate.
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nucleus could be described as that of an irrotational current, then its mo-
ment of inertia would, from (18.49), have to be 6 % of that of a rigid sphere.
The level spacings of the ground state band yield, however

Θ232Th

Θrigid sphere
≈ 0.3 . (18.50)

This implies that the experimentally determined moment of inertia lies be-
tween the two extremes (Fig. 18.13).

This result may be understood at a qualitative level rather easily. We
mentioned in Sect. 17.4 that nuclear deformation is a consequence of an
accumulation of mutually attractive orbitals either parallel to the symmetry
axis (prolate shape) or perpendicular to it (oblate shape). The deformation is
associated with the orbitals and one would expect deformed nuclei to rotate
like rigid ellipsoids; but this clearly does not happen. This deviation from the
rotation of a rigid rotator implies that nuclear matter must have a superfluid
component. Indeed nuclei behave like eggshells that are filled with a mixture
of a normal fluid and a superfluid.

The superfluid components of nuclear matter are presumably generated
by the pairing force. Nucleons with opposite angular momenta combine to
form pairs with spin zero (cf. p. 263). Such zero spin systems are spheri-
cally symmetric and cannot contribute to the rotation. The pair formation
may be understood analogously to the binding of electrons in Cooper pairs
in superconductors [Co56b, Ba57]. The paired nucleons represent, at least
as far as rotation is concerned, the superfluid component of nuclear mat-
ter. This means on the other hand that not all nucleons can be paired off
in deformed nuclei; the larger the deformation, the more nucleons must re-
main unpaired. This explains why the moment of inertia increases with the
deformation (Fig. 18.13).

A similar dependence of the moment of inertia upon the unpaired nucleons
can be seen in the rotation bands. The speed of rotation of the nucleus,
and hence the centrifugal force upon the nucleons, increases with angular
momentum. This causes nucleon pairs to break apart. Thus for large angular
momenta the moment of inertia approaches that of a rigid rotator, as one
can vividly demonstrate in 152Dy.

The excitation spectrum of 152Dy (Fig. 18.14) is more than a little exotic.
The ground state of 152Dy is not strongly deformed, as one sees from the
fact that the levels in the ground state rotation band do not strictly follow
the E ∝ J(J + 1) law and that transition probabilities are small. This band,
in which the 0+ until 46+ states have been observed, first shows a genuine
rotational character for high spins. The band which goes up to JP = 60+ is
particularly interesting [Tw86]. The moment of inertia of this band is that of
a rigid ellipsoid whose axes have the ratios 2 : 1 :1 [Ra86]. The transition prob-
abilities inside this band are of the order of 2000 single particle probabilities.
Additionally to these two rotation bands, which have a prolate character,
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Fig. 18.14. Energy levels of 152Dy [Sh90]. Although the low energy levels do not
display typical rotation bands, these are seen in the higher excitations, which implies
that the nucleus is then highly deformed.

states have been found which may be interpreted as those of an oblately de-
formed nucleus. Evidently 152Dy has two energy minima near to its ground
state, a prolate and an oblate shape. This example shows very nicely that for
nuclei with incomplete shells a deformed shape is more stable than a sphere.
Tiny changes in the configuration of the nucleus decide whether the prolate
or oblate form is energetically favoured (Fig. 17.10).
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Further excitations of deformed nuclei. We have here only treated the
collective aspects of rotation. Generally, however, excitations occur where,
as well as rotation, an oscillation around either the equilibrium shape of the
deformed nucleus or single particle excitations are seen. (The latter case may
be particularly clearly seen in odd nuclei.) The single particle excitations may
be, as described in Sect. 17.4, calculated from the movement of nucleons in
a deformed potential. Deformed nuclei may be described, similarly to their
vibrating brethren, in a hybrid model which employs collective variables for
the rotating and vibrating degrees of freedom. The single particle motion
is coupled to these collective variables. The names of Bohr and Mottelson
in particular are associated with the work that showed that a consistent
description of nuclear excitations is possible in such hybrid models.

Problems
1. The electric dipole giant resonance

a) How large is the average deviation between the centres of mass of the pro-
tons and neutrons in giant dipole resonances for nuclei with Z = N = A/2?
The A dependence of the resonance energy is very well described by �ω ≈
80 MeV/A1/3. Give the numerical value for 40Ca.

b) Calculate the squared matrix element for the dipole transition in this model.
c) Calculate the matrix element for a proton or neutron dipole transition (18.36)

in the shell model with a harmonic oscillator potential. Use the fact that sin-
gle particle excitations are about half the size of those of the giant resonance.

2. Deformation
The deformation parameter of the 176

71Lu nucleus is δ = +0.31. Find the semi-
axes a and b of the rotational ellipsoid, describe its shape and calculate the
quadrupole moment of this nucleus.

3. Rotational bands
The rotational band of 152Dy in Fig. 18.14 which extends up to JP = 60+

corresponds to the rotation of an ellipsoid the ratio of whose axes is 2 : 1 : 1.
What would be the velocity of the nucleons at the “tip” of the ellipsoid if this
was a rotating rigid body? Compare this velocity with the average speed of
nucleons in a Fermi gas with p = pF = 250 MeV/c.
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Up to now we have concerned ourselves with the properties of nuclei in the
ground state or the lower lying excited states. We have seen that the ob-
served phenomena are characterised, on the one hand, by the properties of a
degenerate fermion system and, on the other, by the limited number of the
constituents. The nuclear force generates, to a good approximation, an overall
mean field in which the nucleons move like free particles. In the shell model
the finite size of nuclei is taken into account and the states of the individual
nucleons are classified according to radial excitations and angular momenta.
Thermodynamically speaking, we assign such systems zero temperature.

In the first part of this chapter we want to concern ourselves with highly
excited nuclei. At high excitation energies the mean free path of the nucleon
inside the nucleus is reduced; it is only about 1 fm. The nucleus is then no
longer a degenerate fermionic system, but rather resembles, ever more closely
for increasing excitations, the state of a normal liquid. It is natural to use
statistical methods in the description of such systems. A clear description
may be gained by employing thermodynamical quantities. The excitation of
the nucleus is characterised by the temperature. We should not forget that
strictly speaking one can only associate a temperature to large systems in
thermal equilibrium and even heavy nuclei do not quite correspond to such
a system. As well as this, excited nuclei are not in thermal equilibrium, but
rather rapidly cool down via the emission of nucleons and photons. In any
thermodynamical interpretation of experimental results we must take these
deficiencies into account. In connection with nuclear thermodynamics one
prefers to speak about nuclear matter rather than nuclei, which implies that
many experimental results from nuclear physics may be extrapolated to large
systems of nucleons. As an example of this we showed, when we considered
the nuclear binding energy, that by taking the surface and Coulomb energies
into account one can calculate the binding energy of a nucleon in nuclear
matter. This is just the volume term of the mass formula, (2.8).

Heavy ion reactions have proven themselves especially useful in the
investigation of the thermodynamical properties of nuclear matter. In
nucleus-nucleus collisions the nuclei melt together to form for a brief time
a nuclear matter system with increased density and temperature. We will try
below to describe the phase diagram of nuclear matter using experimental
and theoretical results about these reactions.
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The results of nuclear thermodynamics are also of great importance for
cosmology and astrophysics. According to our current understanding, the
universe in the early stages of its existence went through phases where its
temperature and density were many orders of magnitude higher than in the
universe of today. These conditions cannot be reconstructed in the laboratory.
Many events in the history of the universe have, however, left lasting traces.
With the help of this circumstantial evidence one can try to draw up a model
of the development of the universe.

19.1 Thermodynamical Description of Nuclei

We have already in Sect. 3.4 (Fig. 3.10) distinguished between three sorts of
excitations in nuclei:

– The ground state and the low-lying states can be described in terms of
single particle excitations or via collective motion. This was treated in
Chapters 17 and 18.

– Far above the particle threshold there are no discrete states but only a
continuum.

– In the transition region below and barely above the particle threshold there
are lots of narrow resonances. These states do not, however, contain any
information about the structure of the nucleus. The phenomena in this
energy range in nuclei are widely referred to as quantum chaos.

In the following we shall concern ourselves with the last two of these domains.
Their description involves statistical methods and so we will initially turn our
attention to the concept of nuclear temperature.

Temperature. We want to introduce the idea of temperature in nuclear
physics through the example of the spontaneous fission of 252Cf. The half life
of 252Cf is 2.6 years and it has a 3.1 % probability of decaying via spontaneous
fission. There is some friction in the separation of the fission fragments and
so not all of the available energy from the fission process is converted into
kinetic energy for the fragments. Rather the internal energy of the fragments
is increased: the two fragments heat up.

The cooling down process undergone by the fission fragments is shown
schematically in Fig. 19.1. Initially cooling down takes place via the emission
of slow neutrons. Typically 4 neutrons are emitted, each of them carrying off,
on average, 2.1 MeV. Once the fragments have cooled below the threshold
for neutron emission, they can only cool further by photon emission.

The energy spectrum of the emitted neutrons has the form of a evapora-
tion spectrum. It may be described by a Maxwell distribution:

Nn(En) ∼
√
En · e−En/kT . (19.1)
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Fig. 19.1. Cooling of fis-
sion fragments (schematic).
A 252Cf nucleus splits into
two parts with mass num-
bers X and Y which then
cool down by emitting first
neutrons and later photons.

Figure 19.2 shows the experimental spectrum normalised by a factor of
√
En.

The exponential fall-off is characterised by the temperature T of the system.
In this case kT = 1.41MeV. Fission fragments from different nuclei are found
to have different temperatures. One finds, e.g., a smaller value in the fission
of 236U, namely kT = 1.29 MeV.

Figure 19.3 displays the energy spectrum of the photons emitted in the
de-excitation of the produced daughter nuclei. On average about 20 photons
are set free for each spontaneous fission, and 80 % of these photons have
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Fig. 19.2. Energy spectrum of neutrons emitted in the spontaneous fission of 252Cf
(from [Bu88]). The distribution is divided by

√
En and then fitted to the exponential

behaviour of a Maxwell distribution (solid line).
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Fig. 19.3. Photon emission energy spectra in the spontaneous fission of 252Cf.
The various spectra correspond to different mass numbers, m1, of the lighter fission
products (from top to bottom). The dotted line is a common fit of an exponential
function (from [Gl89]).

energies of less than 1 MeV. This spectrum also closely resembles an evapo-
ration spectrum. The stronger fall-off of the photon spectrum compared to
the neutron spectrum signals that the temperature in the photon emission
phase, which takes place for lower nuclear excitations, is significantly lower.

Our successful statistical interpretation of these neutron and photon spec-
tra leads to the important conclusion that the states in the neighbourhood of
the particle threshold, which may be understood as a reflection of the corre-
sponding transitions, can also be described with statistical methods. Indeed
the observed form of the spectrum may be formally derived from a statistical
study of the density of states of a degenerate Fermi gas.

19.2 Compound Nuclei and Quantum Chaos

Many narrow resonances may be found in the transition region below and
just above the particle threshold of a heavy nucleus. The states below the
particle threshold are discrete and each one of these states possesses definite
quantum numbers. The same is true of the states immediately above the
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threshold. Decays into these states are only described statistically through
the density of these states. These states therefore do not contain any specific
information about the structure of the nucleus.

Compound nuclei. In neutron capture by heavy nuclei a multiplicity of res-
onances are observed. An example of such a measurement is seen in Fig. 19.4
where the cross-section for neutron scattering off thorium displays very many
resonances. One should note that the energy scale is in eV, the separation of
these resonances is thus six orders of magnitude smaller than the gaps in en-
ergy separating lower lying states. This observation was already explained in
the thirties by Niels Bohr in the so-called compound nucleus model. Neutrons
in the nucleus have a very short free path due to the strong interaction and
they very rapidly distribute their energy among the nucleons in the nucleus.
The probability that all the energy supplied is held by one single nucleon is
small. The nucleons cannot therefore escape from the nucleus and this leads
to a long lifetime for the compound nucleus states. This lifetime is mirrored
in the narrow widths of the resonances.

This picture has been greatly refined in the intervening decades. Thus the
compound nucleus state is not reached immediately, but rather the system,
via successive collisions, passes through a series of intermediate states. The
compound nucleus state is the limiting case in which the nucleons are in
thermal equilibrium.

Quantum chaos in nuclei. In the theory of classical deterministic systems
we distinguish between regular and chaotic orbits. Regular orbits are stable
orbits which are not greatly affected by small external perturbations. The
particles undergo periodic motion and the entire configuration of the system
thus repeats itself. Chaotic orbits are very different. They are not periodic
and infinitesimally small perturbations lead to big changes. While predictions
for the development of regular systems may be made to an arbitrary accu-
racy, the uncertainties associated with predicting chaotic systems increase
exponentially.
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Fig. 19.4. Total cross-section for the reaction 232Th+n as a function of the neutron
energy. The sharp peaks correspond to resonances with orbital angular momentum
� = 0 (from [Bo69]).
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In quantum mechanics regular orbits correspond to states whose wave
functions may be calculated with the help of the Schrödinger equation in some
model, e.g., for nuclei the shell model. The quantum mechanical equivalent
of classical chaotic motion are states which are stochastically made up of
single particle wave functions. In both the classical and quantum mechanical
cases a system in a chaotic state does not contain any information about the
interactions between the particles.

The stochastic composition of chaotic states can be experimentally
demonstrated by measuring the energy separations between these states. For
this one considers resonance spectra such as that of Fig. 19.4. In the excita-
tion region of the compound nucleus the states are very dense, so a statistical
approach is justified.

It is apparent here that states with the same spin and parity (in Fig. 19.4
all the sharp resonances) attempt to keep as far apart as possible. The most
likely separation of these states is significantly greater than the most likely
separation of the energy levels of states if they were, for the same state
density, distributed in a statistical fashion, according to a Poisson distribution
independently of each other. This behaviour of the chaotic states is just what
one expects if they are made up from a mixture of single particle states with
the same quantum numbers. Such quantum mechanical mixed states attempt
to repel each other, i.e., their energy levels arrange themselves as far apart
from each other as possible.

The existence of collective states, such as, e.g., the giant dipole resonance,
for excitations above the particle threshold, i.e., in the region where the
behaviour of the states is chaotic, is a very pretty example of the coexistence
of regular and chaotic nuclear dynamics. Excitation of the collective state of
the giant resonance takes place through photon absorption. The collective
state couples to the many chaotic states via the nucleon-nucleon interaction.
These partially destroy the coherence and thus reduce the lifetime of the
collective state.

The continuum. The continuum is by no means flat, rather strong fluctua-
tions are seen in the cross-section. The reason for this is that, on the one hand,
at higher energies the widths of the resonances increase because more decay
channels stand open to them, but on the other hand the density of states
also increases. Resonances with the same quantum numbers thus interfere
with each other which leads to fluctuations in the total cross-section. These
fluctuations do not correspond to single resonances but to the interference of
many resonances. The size of the fluctuations and their average separation
can be quantitatively calculated from the known state density [Er66].
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19.3 The Phases of Nuclear Matter

The liquid–gas phase transition. Peripheral heavy ion reactions have
proven themselves most useful as a way to heat up nuclei in a controlled
way. In a glancing collision of two nuclei (Fig. 19.5) two main fragments
are produced which are heated up by friction during the reaction. In such
reactions one can measure rather well both the temperature of the fragments
and also the energy supplied to the system. The temperature of the fragments
is found from the Maxwell distribution of the decay products, while the total
energy supplied to the system is determined by detecting all of the particles
produced in the final state. Since the fragment which came from the projectile
moves off in the direction of the projectile, its decay products will also move
in that direction and may be thus kinematically distinguished both from
the decay products of the target fragments and also from the frictionally
induced evaporative nucleons. The contributions from the energy supplied
to the fragments and from the energy lost to friction during the glancing
collision may thus be separated from one another.

Let us take as an example an experiment where gold nuclei with an energy
of 600 MeV/nucleon were fired at a gold target. The reaction products were

T

ρ

Fig. 19.5. A peripheral nuclear collision. The large fragments are heated up by
friction. As well as this, individual nucleons and smaller nuclear fragments are also
produced in the collision. The diagram describes the time evolution of the density
 and temperature T of the fragments during the collision.
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Fig. 19.6. Temperature of the
fragments in a peripheral collision
of two 197Au nuclei as a function of
the excitation energy per nucleon
(from [Po95]). The behaviour of
the temperature can be under-
stood as a phase transition in nu-
clear matter.

then tracked down using a detector which spanned almost the entire solid
angle (a 4π detector).

The dependence of the fragments’ temperature on the energy supplied to
the system is shown in Fig. 19.6. For excitation energies E/A up to about
4 MeV/nucleon one observes that the temperature sharply increases. In the
region 4MeV < E/A < 10MeV the temperature hardly varies at all, while
at higher energies it again grows rapidly. This behaviour is reminiscent of
the process of water evaporation where, around the boiling point, at the
phase transition from liquid into steam, the temperature remains constant,
even though energy is added to the system, until the entire liquid has been
converted into a gaseous state. It is therefore natural to interpret the tem-
perature dependence described above as a nuclear matter phase transition
from a liquid to a gas-like state.

The terms which we have used come from equilibrium thermodynamics.
For such conditions a logical interpretation of the phase transition would be
the following: at a temperature of about kT ∼ 4 MeV a layer of nucleons
in a gaseous phase forms around the nucleus. This does not evaporate away
but remains in equilibrium with the liquid nucleus and exchanges nucleons
with it. The nucleon gas can only be further heated up after the whole of the
nucleon liquid has evaporated.

Hadronic matter. If we wish to investigate central, and not peripheral, col-
lisions in gold-gold collisions, we have to select in the experiment those events
in which many charged and neutral pions are emitted (Fig. 19.7). To keep
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Fig. 19.7. Central collision of two heavy nuclei at high energies. A large num-
ber of pions are produced here. The curves show the increase of density, , and
temperature, T , in the central region of the collision.

the discussion simple, we will choose projectile energies of 10 GeV/nucleon
or more for which a large number of pions is created.

At such energies the nucleonic excitation N + N → Δ + N has a cross-
section of σ = 40 mb. The corresponding path length λ ≈ 1/σ
N in the
nucleus is of the order of 1 fm. This means that multiple collisions take place
in heavy ion collisions and that for sufficiently high energies every nucleon
will on average be excited once or more into a Δ baryon. In the language
of thermodynamics this excitation corresponds to the opening up of a new
degree of freedom.

Δ baryons decay rapidly but they are continually being reformed through
the inverse reaction πN → Δ. Creation and decay via πN ↔ Δ thus stand
in a dynamical equilibrium. This mix of nucleons, Δ baryons, pions and, in
significantly smaller amounts, other mesons is called hadronic matter.

Pions, since they are much lighter than the other hadrons, are primarily
responsible for energy exchange inside hadronic matter. The energy density
and temperature of hadronic matter produced in a collision of two atomic
nuclei can be experimentally determined with the help of these pions. The
temperature is found from the energy distribution of those pions which are
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Fig. 19.8. Phase diagram for nuclear matter. Normal nuclei have  = 0 (= N) and
temperature T = 0. The arrows show the paths followed by nuclei in various heavy
ion reactions. The short arrow symbolises the heating up of nuclei in peripheral
collisions; the long arrow corresponds to relativistic heavy ion collisions, in which
nuclear matter possibly crosses the quark-gluon plasma phase. The cooling of the
universe at the time T ≈ 1 μs is represented by the downwards pointing arrow.

emitted orthogonally to the beam direction. Their energy spectrum has the
exponential behaviour expected of a Boltzmann distribution:

dN
dEkin

∝ e−Ekin/kT , (19.2)

where Ekin is the kinetic energy of the pion. One finds experimentally that
the temperature of the pionic radiation is never greater than kT ≈ 150MeV,
no matter how high the energies of the colliding nuclei are. This may be
understood as follows: hot nuclear matter expands and in doing so cools down.
Below a temperature kT ≈ 150 MeV, the hadronic interaction probability
of the pions, and thus energy exchange between them and other particles,
decreases sharply. This process is referred to as the pions freezing out.1

Phase diagram for nuclear matter. The various phases of nuclear mat-
ter are summarised in Fig. 19.8. We want to clarify this phase diagram by
comparing nuclear matter with usual matter (that composed of atoms or
molecules). Cold nuclei have density 
N and temperature kT = 0. A neutron

1 A similar process takes place in stars: the electromagnetic radiation in the interior
of the sun is at many millions of K. On its way out it cools down via interactions
with matter. What we observe is white light whose spectrum corresponds to the
temperature of the solar surface. In contrast to hot nuclear matter, the sun is of
course in equilibrium and is not expanding.
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star corresponds to a state with kT = 0, however, its density is about 3–10
times as big as that of nuclei.

If one supplies energy to a normal nucleus, it heats up and emits nucleons
or small nuclei, mainly α clusters, just as a liquid droplet evaporates atoms
or molecules. If, however, one confines the material, increasing the energy
supplied leads to the excitation of internal degrees of freedom. In a molecular
gas these are rotational and vibrational excitations. In nuclei nucleons can
be excited into Δ(1232) resonances or to still higher nucleon states. We have
called the mish-mash of nucleons and pions, which are then created by decays,
hadronic matter.

Quark-gluon plasma. The complete dissociation of atoms into electrons
and atomic nuclei (a plasma) has its equivalent in the disintegration of nucle-
ons and pions into quarks and gluons. Qualitatively the positions of the phase
boundary in the temperature-density diagram (Fig. 19.8) may be understood
as follows: at normal nuclear densities each nucleon occupies a volume of
about 6 fm3, whereas the actual volume of a nucleon itself is only about
a tenth of this. If one then were to compress a cold nucleus (T=0) to ten
times its usual density, the individual nucleons would overlap and cease to
exist as individual particles. Quarks and gluons would then be able to move
“freely” in the entire nuclear volume. If on the other hand one were to follow
a path along the temperature axis, i.e., increase the temperature without
thereby altering the nucleon density in the nucleus, then at a temperature of
200 MeV enough energy would be available to the individual nucleon-nucleon
interactions to increase, via pion production, the hadronic density and the
frequency of the collisions between them so much that it would be impossible
to assign a quark or gluon to any particular hadron.

This state is referred to as a quark-gluon plasma. As we have already
mentioned, this state, where the hadrons are dissolved, cannot be observed
through the study of emitted hadrons. There are attempts to detect a quark-
gluon plasma state via electromagnetic radiation. The coupling of photons
to quarks is about two orders of magnitude smaller than that of strongly
interacting matter is. Thus any electromagnetic radiation produced in any
potential creation of a quark-gluon plasma, e.g., in relativistic heavy ion
collisions, could be directly observed. It would not be cooled down in the
expansion of the system.2

There is a great deal of interest in detecting a quark-gluon plasma because
it would mean an experimental confirmation of our ideas of the structure
of strongly interacting matter. If the assignment of quarks and gluons to
individual hadrons were removed, the constituent quarks would lose their

2 The above analogy from astrophysics is also applicable here: the neutrinos which
are created in fusion reactions in the solar interior are almost unhindered in their
escape from the sun. Their energy spectrum thus corresponds to the temperature
of where they were produced and not to that of the surface.
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masses and turn into partonic quarks; one would be able to simulate the
state of the universe at a very early stage in its history.

19.4 Particle Physics and Thermodynamics
in the Early Universe

In all societies men have constructed myths about the ori-
gins of the universe and of man. The aim of these myths is
to define man’s place in nature, and thus give him a sense
of purpose and value.

John Maynard Smith [Sm89]

The interplay between cosmology and particle physics during the last few
decades has lead to surprising insights for both areas. In what follows we
want to depict current ideas about the evolution of the universe and show
what consequences this evolution has had for our modern picture of parti-
cle physics. We will here make use of the standard cosmological model, the
big bang model, according to which the universe began as an infinitely hot
and dense state. This fireball then expanded explosively and its temperature
and density have continued to decrease till the present day. This expansion
of an initially hot plasma of elementary particles was the origin of all nowa-
days known macroscopic and microscopic forms of matter: stars and galaxies;
leptons, quarks, nucleons and nuclei. This model for the time development
of the universe was motivated and then confirmed by two important experi-
mental observations: the continuous expansion of the universe and the cosmic
background radiation.

The expanding universe. The greatest part of the mass of the universe
is located in galaxies. These spatially concentrated star systems are held
together by the force of gravity and, depending upon their size, have masses
of between 107 and 1013 solar masses. It is believed that there are about 1023

galaxies in the universe – a number comparable to the number of molecules
in a mole.

With the help of large telescopes it is possible to measure the distance
to and the velocities of galaxies which are a long way away from the earth.
The velocity of a galaxy relative to the earth can be determined from the
Doppler shift of atomic spectral lines, which are known from laboratory mea-
surements. One so finds a shift of the observed lines into the red, i.e., the
longer wave-length region. This corresponds to a motion of the galaxies away
from us. This observation holds no matter what direction in the heavenly
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sphere the galaxy under observation is in. A determination of the distance
to the galaxy is carried out by measuring its light intensity and estimating
its luminosity; these quantities are related by the well-known 1/r2 law. Such
distance estimates are particularly imprecise for very distant galaxies.

The measured velocities v of the observed galaxies are roughly linearly
proportional to their separation d from the earth

v = H0 · d . (19.3)

The measurements of HO has been approved appreciably in recent years. Its
present value is

H0 = 70 ± 8km s−1/MPc (1 Pc = 3.1 · 1013 km = 3.3 light years) .

It is called the Hubble constant after the discoverer of this relationship. These
observations taken together are interpreted as implying an isotropic expan-
sion of the universe.

According to the big bang theory, the initial hot plasma filled the universe
with extremely short wave-length electromagnetic radiation, which, though,
increased its wave-length as the universe expanded and cooled. The observa-
tion, by Penzias and Wilson [Pe65], of this radiation in the microwave-length
region, which we now call the cosmic background radiation, was therefore a
very important confirmation of the big bang model. This microwave radia-
tion corresponds to black body radiation at a temperature of 2.73 K and is
measured in every direction of the universe as being extraordinarily isotropic
(for reference see [PD98]).

A relation between the age and the size of the universe can be derived
with the help of general relativity theory and the observed expansion of the
universe. In the simplest model, the Friedman model of the expanding uni-
verse, one distinguishes between three cases which depend upon the average
mass density of the universe: if the average density is greater than a critical
density, then the mutual attraction of the galaxies will slow the expansion of
the universe down and eventually produce a contraction. The universe will
then collapse into a point (closed universe). If the average density is smaller
than the critical density, gravitation cannot reverse the expansion. In such a
case the universe will expand forever (open universe). If the average and crit-
ical densities are approximately the same the universe would asymptotically
approach a limiting radius.

The density measured with optical methods is in fact smaller than the
critical density. It is, however, suspected that one or more sorts of dark mat-
ter exist, which are not detectable with optical methods, and it cannot be
excluded that the universe does after all possess the critical density. One
conceivable sort of dark matter would be massive neutrinos. Experiments to
measure the mass of the neutrino (Sect. 17.6) are of great importance for this
suggestion. Even if neutrino masses were only a few eV/c2 the large num-
ber of neutrinos in the universe would make a significant contribution to the
mass, and hence the density, of the universe.
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Since the universe is still in an early stage of its expansion the previous
history of our universe would be similar in all three cases. The age of a
universe with a sub-critical density is given by the inverse Hubble constant

t0 =
1
H0

, (19.4)

and is about 14 thousand million years.

The first three minutes of the universe. In the initial phase of the
universe all the (anti)particles and the gauge bosons were in thermodynamical
equilibrium, i.e., there was so much thermal, and thus kinematical, energy
available that all the (anti)particles could transform into each other at will.
There was therefore no difference between quarks and leptons, which means
that the strength of all the interactions was the same.

After about 10−35 s the temperature had decreased so much due to the
expansion that a phase transition took place and the strong interaction de-
coupled from the electroweak interaction, i.e., the strongly interacting quarks
barely interacted with the leptons any more. At this stage the ratio between
the numbers of quarks and photons was fixed at about 10−9.

After about 10−11 s, at a temperature kT ≈ 100 GeV, a further phase
transition took place in which the weak interaction decoupled from the elec-
tromagnetic interaction. We will discuss this process below.

When, after about 10−6 s, the continuous expansion of the universe had
lowered its temperature down to kT ≈ 100 MeV, which is the typical energy
scale for hadronic excitations, the quarks formed bound states in the shape of
baryons and mesons. The protons and neutrons so-produced were in thermal
equilibrium due to weak processes.

After about 1 s and at a temperature kT ≈ 1 MeV, the difference be-
tween the neutron and proton masses, the neutrinos had too little energy to
maintain the state of equilibrium between the protons and neutrons. They
decoupled from matter, i.e., they henceforth essentially no longer interacted
at all and propagated freely through the universe. Meanwhile the ratio of
protons to neutrons increased up to a value of 7.

After about three minutes of expansion the temperature had fallen to
kT ≈ 100 keV. From this moment the thermal equilibrium between nucleons
and photons was broken, since the photon energies were no longer sufficient
to break up the light nuclei, through photofission processes, into their con-
stituents at the same pace as they were produced by nucleon fusion. In this
phase the big bang nucleosynthesis of deuterium, helium and lithium nuclei
took place.

Figure 19.9 schematically shows the early history of the universe from
the electroweak phase transition once again. The curves represent the time
(or temperature dependent) evolution of the energy density of radiation and
matter. One can see the sharp drop in the energy density caused by the ex-
pansion of the universe. At temperatures of 1013 K the hadrons, and later
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Fig. 19.9. The evolution of the energy density of the universe, as a function of
temperature, after the electroweak phase transition (T ≈ 1015 K). In the early
development of the universe radiation was in thermal equilibrium with matter and
antimatter. Over a period of time matter decoupled from radiation and the matter
and radiation energy densities developed different temperature dependences, so that
the universe finally became matter dominated.

the leptons, decouple from the radiation. At T ≈ 104 K a matter dominated
universe takes over from a previously radiation dominated universe. The cur-
rent temperature of the universe is 2.73 K, the temperature of the cosmic
background radiation.

Below we want to delve further into some important events from this early
history of the universe.

Matter-antimatter asymmetry. All observations show that the modern
universe is made up solely of matter and there is no evidence for some parts of
the universe being composed of antimatter. Since according to our ideas all
(anti)particles at a very early stage of the universe were in thermal equi-
librium, i.e., fermion-antifermion creation from gauge bosons was just as
frequent as fermion-antifermion annihilation into gauge bosons, then if this
symmetry had survived the development of the universe, there ought to be
just as many fermions as antifermions or, more especially, as many quarks as
antiquarks (which means as many baryons and antibaryons) in the universe.
Furthermore there ought to be free photons which were produced in fermion-
antifermion annihilation, but which due to the expansion and cooling of the
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universe could not go through the reverse reaction. One finds today that the
ratio of baryons to photons is 3 · 10−10. If all of these photons came from
quark-antiquark annihilation, then a quark-antiquark asymmetry in the hot
plasma of the early universe of

Δq =
q − q
q + q

= 3 · 10−10 (19.5)

would be sufficient to explain the current observed matter-antimatter asym-
metry. The question is how did this small but decisive surplus of quarks arise
in the early universe?

To generate a matter-antimatter asymmetry we have to fulfil three condi-
tions: CP violation, baryon number violation and thermal non-equilibrium.
In the framework of grand unified theories, GUT’s, one can imagine that all
of these conditions could be fulfilled. Consider the situation of the universe at
time t < 10−35 s. At this moment all (anti)fermions were equivalent, so they
could be transformed into each other which could in certain reactions lead to a
violation of baryon number. A hypothetical exchange particle, which mediates
such a transition, is the X boson whose mass would be about 1014 GeV/c2.
These X bosons could be produced as real particles at sufficiently high en-
ergies and would decay into a quark and an electron, similarly the X boson
decays into an antiquark and a positron. CP violation in the decay of the X
boson would mean that the decay rates of the X and X bosons would not be
exactly equal. In thermal equilibrium, i.e., at temperatures or energies above
the mass of the X boson, the effect of CP violation on the baryon number
would be eliminated since the creation and decay of the X and X bosons
would be in equilibrium. This equilibrium would first be destroyed by the
cooling of the universe and the asymmetry of the CP violating decay of the
X boson would lead to a quark surplus, which eventually would be responsi-
ble for the matter-antimatter asymmetry we observe in the universe around
us.

There are searches in progress for evidence of the existence of systems
with CP violation and baryon number violation in the modern universe. As
mentioned in Sect. 14.4 CP violation has been detected in K0 decay, but the
observed effect is not sufficient to explain the matter-antimatter asymmetry.
Experiments looking for proton decay have so far not yielded any evidence
for baryon number violation.

Therefore, a possible CP violation in the lepton sector is getting increasing
attention of the experimentalists (see Chap. 10.6).

Electroweak phase transitions. Let us now consider the universe at the
age of just 10−11 s when it had a temperature of kT ≈ 100GeV. It is believed
that one can reconstruct the development of the universe from what is now
known of elementary particle physics back to this stage. Extrapolations fur-
ther back into the past may be based on plausible assumptions but they are
in no way proven.
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It is believed that the the electroweak phase transition took place at this
moment. Only after this phase transition did the now known properties of
the elementary particles establish themselves. A loss of symmetry and an
increase in order is characteristic of a phase transition of this type; just as
in the phase transition from the paramagnetic to the ferromagnetic phase in
iron when it drops below the Curie temperature. For temperatures equiva-
lent to energies > 100 GeV, in other words before the phase transition, the
photon, W and Z gauge bosons had similar properties and the distinction be-
tween the electromagnetic and weak forces was removed (symmetry!). In this
state there was also no significant difference between electrons and neutrinos.
Below the critical temperature this symmetry was, however, destroyed. This
phenomenon, known in the standard model of elementary particle physics as
spontaneous symmetry breaking, caused the W and Z bosons to acquire their
large masses from so-called Higgs’ fields and the elementary particles took on
the properties that we are now familiar with (cf. Chap. 11.2).

Although today elementary particles may be accelerated up to energies
> 100 GeV and the W and Z bosons have been experimentally produced
and detected, it will not be possible to reproduce in the laboratory the high
energy-densities of 108 times the nuclear density which reigned at the elec-
troweak phase transition. We can therefore only try to reproduce and to
demonstrate the traces left by the phase transition, i.e., the W, Z and Higgs
bosons, so as to use them as witnesses of what went on in the initial stages
of the universe.

Hadron formation. An additional phase transition took place when the
universe was about 1μs old. At this stage the universe had an equilib-
rium temperature kT ≈ 100 MeV. The hadrons constituted themselves in
this phase from the previously free quarks and gluons (quark-gluon plasma).
Mostly nucleons were formed in this way.

Since the masses of the u- and d-quarks are very similar, they first formed
roughly the same numbers of protons and neutrons, which initially existed
as free nucleons since the temperature was too high to permit the formation
of nuclei. These protons and neutrons were in thermal equilibrium until the
temperature of the universe had sunk so much that the reaction rates for
neutron creation processes (e.g., ν̄p → e+n) were, as a consequence of the
greater mass of the neutron, significantly less than that of the inverse pro-
cesses of proton formation (e.g., ν̄p ← e+n). Thenceforth the numerical ratio
of neutrons to protons decreased.

There are currently attempts to simulate this transition from a quark-
gluon plasma to a hadronic phase in heavy ion reactions. In these reactions
one tries to first create a quark-gluon plasma through highly energetic col-
lisions of ions, in which the matter density is briefly increased to a multiple
of the usual nuclear density. In such a state the quarks should only feel the
short range and not the long range part of the strong potential, since this
last should be screened by their tightly packed neighbours. In such a case the
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quarks may be viewed as quasi-free and form a quark-gluon plasma. Such a
quark-gluon plasma has, however, not yet been indubitably generated and a
study of the transition to the hadronic phase is thus only possible in a rather
limited fashion.

In the universe the transition from a quark-gluon plasma to the hadronic
phase took place via the equilibrium temperature dropping at low matter
densities. In the laboratory it is attempted to fleetingly create this transi-
tion by varying the matter density at high temperature (cf. Fig. 19.8 and
Sect. 19.3).

Primordial synthesis of the elements. At t = 200 seconds in the cosmo-
logical calendar, the make up of baryonic matter was 88% protons and 12%
neutrons. The creation of deuterium by the fusion of neutrons and protons
was, until this stage, in equilibrium with the inverse reaction, the photodis-
sociation of deuterium into a proton and a neutron, and the lifetime of the
deuterons was extremely short. But now the temperature dropped below the
level where the energy of the electromagnetic radiation sufficed to maintain
the photodivision of the deuterons. Now long-lived deuterons were created
by the reaction

n + p → d + γ + 2.22 MeV.

The lifetime of these deuterons was now limited by its fusion with protons
and neutrons

p + d → 3He + γ + 5.49 MeV
n + d → 3H + γ + 6.26 MeV.

Finally the particularly stable 4He nucleus was created in reactions like 3H+p,
3He + n, 3He + d and d + d. The Li nuclei created by 4He + 3H → 7Li + γ +
2.47 MeV were on the other hand immediately destroyed again by the highly
exothermic reaction

7Li + p → 24He + 17.35 MeV .

Essentially all of the neutrons ended the primordial nuclear synthesis phase
inside 4He, which thus makes up about 24 % of the mass of the universe.

Only traces of deuterium, 3He and 7Li are still present, so at that moment
the greatest part of the baryonic mass must have been in the form of protons.
Since there are no stable nuclei with masses A = 5 and A = 8 it was not
possible at that stage of the universe’s development to build up nuclei heavier
than 7Li through fusion processes. Such nuclei could only be produced much
later in stellar interiors.

The big bang primordial element synthesis phase ended after about 10
minutes when the temperature had dropped so far that the Coulomb barrier
prevented further fusion processes. The much later synthesis of heavy nuclei
inside stars has not altered the composition of baryonic matter significantly.
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The ratio of hydrogen to helium which is observed in the present universe
(cf. Fig. 2.2) is in excellent agreement with the theoretically calculated value.
This is a strong argument in favour of the big bang model.

Cosmic Microwave Background Radiation. The expanding universe,
the helium to hydrogen ratio as the signature of the primordial synthesis
of the elements and the cosmic microwave background (CMB) radiation are
the three most important experimental observations supporting the big bang
model of the universe.

After the “first ten minutes”, the universe was composed of a plasma of
fully ionised hydrogen and helium and about 1010 times as many photons. The
energy density in the universe was radiation dominated. The main mechanism
for energy transport in this period was Compton scattering. The photon mean
free path was small at the cosmic scale and the universe opaque.

One would expect that the decoupling of radiation from matter started
when the temperature became too low to keep the thermal equilibrium via
the reaction

p+ e↔ H + γ. (19.6)

If this process took place under equilibrium conditions the decoupling tem-
perature would be kTdec = 0.32 eV (Tdec ≈ 3700K).

However, the recombination of hydrogen actually started later, at some-
what lower temperatures than kT = 0.32eV. The reason is as follows. Hy-
drogen can be ionised by multiple absorption of low-energy photons from 2S
or 2P excited states. Later recombination by a cascade passing through the
2P state can produce a photon of the correct energy (Lyman α line), which
in turn can be ionised by abundant low-energy photons. As photons from
the 2P → 1S transitions are confined in the universe, recombination is not
possible via a direct cascade through the 2P level. The only leakage of the
Lyman-α photons passes through the two-photon decay of the 2S state. The
lifetime of this state is ≈ 0.1 seconds; therefore, hydrogen recombination is
a non-equilibrium process. The transition from an opaque to a transparent
universe took place at T ≈ 3, 000K. Although at this temperature , the mean
free path of photons increased dramatically, photons still interacted with
free electrons via Thomson scattering to a significant extend. Therefore, the
photon background that we observe comes from the so-called last scattering
surface, where the redshift was less than z ≈ 1, 000. At present the decoupled
radiation is a perfect black body spectrum, with temperature 2.7 K.

The cosmic background radiation is a rich source of information about the
universe before the decoupling of the photons. The temperature fluctuations
in order of 10−5 and with the most pronouncing spatial structure of about
one degree has been interpreted as the quantum fluctuations in the early
universe. They were the seeds from which the galaxies later developed. The
fact that the fluctuations have not been smeared out is seen as a proof for
the universe to be flat, i.e. its density has the critical value ([Hi06]).
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19.5 Stellar Evolution and Element Synthesis

The close weave linking nuclear physics and astrophysics stretches back to
the thirties when Bethe, Weizsäcker and others tried to draw a quantitative
balance between the energy emitted by the sun and the energy that could be
released by the known nuclear reactions. It was, though, Eddington who in
1920 had recognised that nuclear fusion is the source of energy production in
stars.

The basis for modern astrophysics was, however, laid by Fred Hoyle [Ho46]
at the end of the forties. The research programme he proposed required a con-
sistent treatment of astronomical observations, study of the plasma dynamics
of stellar interiors and calculations of the sources of energy using the cross-
sections for nuclear reactions measured in laboratories. Stellar evolution and
the creation of the elements had to be treated together. The observed abun-
dance of the elements around us had to be explicable from element synthesis
in the early stages of the universe and from nuclear reactions in stars and this
would thus be a decisive test of the consistency of stellar evolution models.
The results of this programme were presented by E. Burbidge, G. Burbidge,
Fowler and Hoyle [Bu57].

Stars are produced by the contraction of interstellar gas and dust. This
matter is almost solely composed of primordial hydrogen and helium. The
contraction heats up the centre of the star. When the temperature and pres-
sure are sufficiently large to render nuclear fusion possible, radiation is pro-
duced whose pressure prevents a further contraction of the star. The virial
theorem for the gravitational force law implies a fall-off in the temperature of
stars from their centres to their exteriors. This means that at any separation
from the centre of a star the average kinetic energy of an atom is half the size
of its potential energy. The energy produced in nuclear reactions is primarily
transported by radiation to the surface. The matter in the star is not greatly
mixed up in the process. During the life of the star its chemical composition
changes in the regions where the nuclear reactions take place, in other words
most of all in the heart of the star.

Fusion reactions. A star in equilibrium produces as much energy through
nuclear reactions as it radiates. The equilibrium state is thus highly depen-
dent upon the rate of the fusion reactions. Energy may be released by fus-
ing light nuclei together. It is especially effective to fuse hydrogen isotopes
together to form 4He, since the difference between its binding energy per nu-
cleon, 7.07 MeV, and that of its neighbours is especially large (cf. Fig. 2.4).
We will treat this reaction in more detail below. Fusion processes demand a
sufficiently high temperature, or energy, for the reaction partners to spring
over the hurdle of the Coulomb barrier. It is not necessary that the energy of
the nuclei involved is actually above the barrier, rather what really matters,
in analogy to α-decay, is the probability, e−2G, that the Coulomb barrier
may be tunnelled through. The Gamow factor, G, depends upon the relative
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velocities and the charge numbers of the reaction partners. It is given by (see
chapter 3.2)

G ≈ παZ1Z2

v/c
. (19.7)

Fusion reactions in stars too normally take place below the Coulomb barrier
and through the tunnel effect.
The reaction rate per unit volume is according to (4.3) and (4.4) given by

Ṅ = n1n2〈σv〉 (19.8)

where n1 and n2 are the particle densities of the two fusion partners. We
have written the average value 〈σv〉 since the velocity distribution in a hot
stellar plasma is given by a Maxwell-Boltzmann distribution

n(v) ∝ e−mv2/2kT = e−E/kT (19.9)

and the cross-section σ of the fusion reaction depends strongly, through the
Gamow factor, upon the relative velocity of the reaction partners. This aver-
age value must be calculated by integration over v. Figure 19.10 schematically
shows the convolution of the Gamow factor with a Maxwell distribution. The
overlap of the distributions fixes the reaction rate and the energy range for
which fusion reactions are possible. This depends upon the plasma tempera-
ture and the charges of the fusion partners. The higher the charge numbers,
the higher the temperatures at which fusion reactions become possible.

In this way the lightest nuclide in the solar interior, hydrogen, is burnt up,
i.e., fused together. When this is used up, the temperature has to increase
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Fig. 19.10. Schematic representation of the convolution of a Maxwell distribution
exp{−E/kT} with a Gamow factor exp{−b/E1/2} as used to calculate the rate of
fusion reactions. The product of the curves is proportional to the fusion probability
(dashed curve). Fusion essentially takes place in a very narrow energy interval with
width ΔE0. The integral over this curve is proportional to the total reaction rate.
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drastically for helium and, later, other heavier elements to be able to fuse
together. The length of the various burn-phases depends upon the mass of
the star in question. For heavier stars the pressure and thus the density of
the plasma at the centre is higher and so the reaction rate is higher compared
to lighter stars. Thus heavier stars are shorter lived than heavy ones.

Burning hydrogen. In the formation phase of stars with masses greater
than about one tenth of a solar mass, the temperatures inside the stars reach
values of T > 107 K, and thus the first nuclear fusion processes are possible.
In the early part of their lives stars gain their energy by burning hydrogen
into helium in the proton-proton cycle:

p + p → d + e+ + νe + 0.42 MeV
p + d → 3He + γ + 5.49 MeV

3He + 3He → p + p + α+ 12.86 MeV
e+ + e− → 2γ + 1.02 MeV.

All in all, in the net reaction 4p → α + 2e+ + 2νe, 26.72 MeV of energy is
released. Of this 0.52 MeV is on average taken by neutrinos and thus lost
to the star. The first reaction is the slowest in the cycle since it requires not
only the fusion of two protons but also the simultaneous transformation of
a proton into a neutron via a weak interaction process. This reaction thus
determines the lifetime of the star in the first stage of its career. There are
various possible branches to the proton-proton cycle, but they are of little
importance for energy production in stars.

As long as the supplies of hydrogen are adequate the star remains stable.
For our sun this period will last about 1010 years, of which about half are
already gone. Larger stars with higher central densities and temperatures
burn faster. If in such stars 12C is already present, then the carbon cycle can
take place:

12
6C

p−→ 13
7N

β+

−→ 13
6C

p−→ 14
7N

p−→ 15
6O

β+

−→ 15
7N

p−→ 12
6C + α . (19.10)

The amount of carbon which was transformed at the beginning of the cycle is
again available for further use at the end and thus it acts as a catalyst. The
net reaction is as in the proton-proton cycle, 4p → α + 2e+ + 2νe, and the
amount of energy released is also 26.72 MeV. The carbon cycle can take place
much faster than the proton-proton cycle. But this new cycle only starts at
higher temperatures due to the greater Coulomb barrier.

Burning helium. Once the hydrogen supplies have dried up, the core of
the star, which is now composed of helium, cannot withstand the pressure
and collapses. For stars much smaller than the sun the gravitational pressure
is not great enough to ignite further fusion reactions. Without the radiative
pressure, the star collapses under its own gravity to a planet sized sphere.
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Fermi pressure is the first thing to stop the collapse and the star becomes a
white dwarf.

Heavier stars heat up until they reach a temperature of about 108 K and
a density of 108 kg/m3. Helium burning then starts up. There is still some
hydrogen in the outermost regions of the star, which is heated up by the
helium burning in the hot central region until in this layer hydrogen burning
commences. The outer mantle swells up through the radiation pressure. Since
the surface area increases the surface temperature drops, even though the
energy production is increasing in this stage. The colour of the star turns red
and it becomes a red giant.

A synthesis of nuclei heavier than 4He appears to be impossible because
there are no stable nuclei with A = 5 and A = 8. 8Be has a lifetime of only
10−16 s, and 5He and 5Li are still less stable. But in 1952 E. Salpeter showed
how heavy nuclei could be produced by helium fusion [Sa52].

At high temperatures around 108 K, which are present in stellar interi-
ors, the unstable 8Be nucleus can be formed from helium-helium fusion and
equilibrium for the reaction 4He +4 He ↔ 8Be is created. This reaction is
only possible in sufficient amounts at such high temperatures, since as well
as the Coulomb barrier an energy level difference of 90 keV must be over-
come (Fig. 19.11). At a density of 108 kg/m3 in the interior of the star an
equilibrium concentration of one 8Be nucleus for 109 4He nuclei is produced.
This minuscule proportion would be enough to produce sizable amounts of
carbon via 4He+8Be → 12C∗ if there were a 0+ state in 12C a little above the
production threshold over which a resonant reaction can take place. Shortly
after this suggestion was made such a state at an excitation energy of 7.654
MeV was indeed found [Co57]. This state decays with a probability of 4 ·10−4

into the 12C ground state (Fig. 19.11). Although this state is 287 keV above
the 8Be + α threshold, it can indeed be populated by reaction partners from
the high energy tail of the Maxwell velocity distribution. The net reaction of
helium fusion into carbon is thus

3 4He → 12C + 2γ + 7.37 MeV .

This so-called 3α-process plays a key role in building up the heavier elements
of the universe. Approximately 1 % of all the nuclei in the universe are heavier
than helium and they were practically all created in the 3α-process.

Burning into iron. When the helium supplies have been used up and the
star is primarily made up of 12C, then stars with masses of the order of the
solar mass turn into white dwarves.

More massive stars go through further phases of development. According
to the temperature α-particles can fuse with 12C, 16O, 20Ne etc., or carbon,
oxygen, neon and silicon can simply fuse with each other.

As an example let us mention the reactions

12C + 12C → 20
10Ne + α+ 4.62 MeV
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Fig. 19.11. Energy levels of the system: 3 α, α + 8Be and 12C. Just above the
ground states of the 3 α system and of the α + 8Be system there is a 0+ state in
the 12C nucleus, which can be created through resonant fusion of 4He nuclei. This
excited state decays with a 0.04 % probability into the 12C ground state.

→ 23
11Na + p + 2.24 MeV

→ 23
12Mg + n − 2.61 MeV

→ 16
8O + 2α− 0.11 MeV .

Other reactions follow the same pattern and populate all the elements be-
tween carbon and iron.

The heavier the fusing nuclei are, the greater is the Coulombic repulsion
and so the temperature must then be higher for fusion to take place. Since
the temperature is greatest at the centre and falls-off towards the surface, an
onion-like stellar structure is formed. At the centre of the star iron is syn-
thesised, towards the edges ever lighter elements are made. In the outermost
layers the remnants of hydrogen and helium are burnt off.

The burning of the heavier nuclei takes place at ever shorter time scales,
since the centre of the star needs to be ever hotter, but simultaneously the
energy gained per nucleon-fusion decreases as the mass number increases
(Fig. 2.4). The final phase, the fusion of silicon to form iron, lasts for only a
matter of days [Be85]. The process of nuclear fusion in stars concludes with
the formation of iron since iron has the largest binding energy per nucleon.

When the centre of the star is made of iron, there is no further source of
energy available. There is neither radiative pressure nor thermal motion to
withstand gravity. The star collapses. The outer material of the star collapses
as if in free fall to the centre. Through this implosion the nuclear matter at
the centre reaches a tremendous density and temperature which leads to
an enormous explosion. The star emits at a stroke more energy than it has
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previously created in its entire life. This is called a supernova. The greater
part of the stellar matter is then flung out into interstellar space and can
later be used as building material for new stars. If the mass of the remaining
stellar core is smaller than the mass of the sun, the star ends its life as a
white dwarf. If it is between one and two solar masses a neutron star is born.
The matter from still heavier remnants ends up as a black hole.

Synthesis of heavier nuclei. Nuclei heavier than iron are synthesised by
neutron accumulation. We distinguish between two processes.
The slow process (s-process). In the burning phase of the star neutrons are
produced in nuclear reactions such as, e.g.,

22
10Ne + α→ 25

12Mg + n − 0.48 MeV (19.11)

or
13
6C + α→ 16

8O + n − 0.91 MeV. (19.12)

Through repeated neutron captures, neutron rich isotopes are produced. If
the isotopes are unstable under β-decay, they decay into their most stable
isobar (Fig. 3.2, 3.3). Thus the synthesis of heavier and heavier elements can
proceed along a stability valley (Fig. 3.1). A limit is, however, reached at
lead. Nuclei above lead are α-unstable. Isotopes built up by the slow process
then decay again into α-particles and lead.
The rapid process (r-process). This process takes place during a supernova ex-
plosion when neutron fluxes of 1032 m−2s−1 can be reached and the successive
accumulation of many neutrons is much quicker than β- or α-decay processes.
Elements heavier than lead can be produced in this process. The upper limit
for the creation of transuranic elements is determined by spontaneous fission.

All the elements (apart from hydrogen and helium) which make up the
earth and ourselves came originally from the interior of stars and were (prob-
ably several times in fact) released through supernova explosions. Even the
absolute amounts as well as the distribution of the elements which are heav-
ier than helium may be calculated from the age of the universe and from
cross-sections measured in laboratories. The results are in excellent agree-
ment with the measured values of the abundance of the elements (Fig. 2.2).
This is definitely one of the great triumphs of the joint efforts of astro and
nuclear physicists.
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Problems
1. Sun

The solar mass is M� ≈ 2 · 1030 kg (3.3 · 105 times the mass of the earth). The
chemical composition of the solar surface is 71% hydrogen, 27% helium and 2%
heavier elements (expressed as parts by mass). The luminosity of the sun is
4 · 1026 W.
a) How much hydrogen is converted into helium every second?
b) How much mass does the sun lose in the same period?
c) What fraction of the original hydrogen content has been converted into he-

lium since the creation of the sun (5 · 109 yrs)?
d) How large was the loss of mass in the same period?
e) Model calculations indicate that the sun will burn hydrogen at a similar rate

for a further 5 · 109 years. A shortage of hydrogen will then force it into a
red giant state. Motivate this time scale.

2. Solar neutrinos
The most important method of energy production in the sun is the fusion of
protons into 4He nuclei. This predominantly takes place through the reactions
p + p → d + e+ + νe, p + d → 3He + γ and 3He + 3He → 4He + p + p. A total of
28.3 MeV is released for every 4He nucleus produced. 90% of this energy exits
as electromagnetic radiation and the rest is mostly converted into the kinetic
energy of neutrinos (typically 0.4 MeV) [Ba89].
a) What is the flux of solar neutrinos at the earth (distance from the sun:

a = 1.5 · 108 km)?
b) In a tunnel in the Abruzzi the GALLEX experiment measures neutrinos

through the reaction 71
31Ga + νe → 71

32Ge + e−. The cross-section of this reac-
tion is about 2.5 · 10−45 cm2. One looks for radioactive 71Ge atoms (lifetime,
τ =16 days) which are produced in a tank containing 30 t of dissolved gallium
(40 % 71Ga, 60 % 69Ga) chloride [An92]. About 50 % of the neutrinos have an
energy above the reaction threshold. One extracts all the germanium atoms
from the tank. Estimate how many 71Ge atoms are produced each day and
after three weeks? How many if one waits “forever”?

3. Supernova
A neutron star with mass, M = 1.5M� (≈ 3.0 · 1030 kg), and radius R ≈ 10 km
is the remnant of a supernova. The stellar material originates from the iron core
(R � 10 km) of the supernova.
a) How much energy was released during the lifetime of the original star

by converting hydrogen into iron? (The binding energy of 56Fe is B =
8.79 MeV/nucleon.) NB: Since after the implosion only a part of the original
iron core remains in the neutron star, the calculation should be performed
only for this mass.

b) How much energy was released during the implosion of the iron core into a
neutron star?

c) In what form was the energy radiated off?



20 Many-Body Systems
in the Strong Interaction

How many bodies are required before we have a problem?
G. E. Brown points out that this can be answered by a
look at history. In eighteenth-century Newtonian mechan-
ics, the three-body problem was insoluble. With the birth
of relativity around 1910 and quantum electrodynamics in
1930, the two- and one-body problems became insoluble.
And within modern quantum field theory, the problem of
zero bodies (vacuum) is insoluble. So, if we are out after
exact solutions, no bodies at all is already too many!

R.D. Mattuck [Ma76]

In the second part of this book we have described how many-body systems
may be built out of quarks. The strong interaction is responsible for the
binding of these systems, which should be contrasted with the binding of
atoms, molecules and solids which are held together by the electromagnetic
interaction.

The systems which are built out of quarks – hadrons and nuclei – are
complex quantum-mechanical systems. This complexity manifests itself in
the systems’ many, apparently mutually incompatible facets. Some aspects
of these systems may be understood in a single particle picture, while some
indicate the existence of large sub-structures and others are explained as
collective effects of the entire system and finally some are chaotic and only
amenable to a statistical description. Each of these concepts, however, only
describes a single aspect of these systems.

Quasi-particles. At sufficiently low excitation energies, many-body sys-
tems, even if they possess a complicated internal structure, may often be
described as systems of so-called quasi-particles: instead of treating the ele-
mentary building blocks, together with their vast variety of mutual interac-
tions, one works with “effective particles” (e. g., electrons and holes in semi-
conductors). A large part of the interactions of the fundamental constituents
with each other is thus incorporated into the internal structure of the quasi-
particles which then, in consequence, only weakly interact with each other.

Collective states. Another group of elementary low-energy excitations are
the so-called collective states, where many building blocks of a system inter-
fere coherently. Examples of this are lattice vibrations in a crystal (phonons)
and waves on the surface of an atomic nucleus.
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Chaotic phenomena. For greater excitation energies all many-particle sys-
tems become more and more complex, until they can no longer be described
quantitatively in terms of elementary excitations. Statistical phenomena,
which have a universal character, and are thus independent of the details
of the interaction, are observed.

Hadrons. Little is so far known about the structure of hadrons. Their el-
ementary constituents are gluons and quarks. However, in order to actually
observe these experimentally, measurements at “infinitely” large momentum
transfers would be necessary. Therefore even in deep inelastic scattering one
only ever observes effective quarks, i.e., many-particle systems. The success of
QCD lies in the fact that it is able to quantitatively explain the dependence
of the structure functions on the resolution. However, the absolute shape of
the structure functions, i.e., hadronic structure, cannot yet be predicted even
at large momentum transfers.

The structure of the nucleons depends, however, on the behaviour of
quarks at relatively small momenta, since the energies of the excited states
are only a few hundred MeV. At such low momentum transfers the coupling
constant αs is so large that the standard QCD perturbative expansion is no
longer applicable and we have to deal with a genuine many-particle system.

It has been seen that the spectroscopic properties of hadrons can be de-
scribed simply in terms of constituent quarks and that one does not need to
take the gluons into account. Constituent quarks are complex objects and not
elementary particles: we have to understand them as quasi-particles. Their
properties (e. g., their masses, sizes and magnetic moments) are distinctly dif-
ferent from those of the elementary quarks. It seems that a certain order in
hadronic spectroscopy can be obtained by introducing these quasi-particles.
The group-theoretical classification of excited states is in fact very successful,
but the dynamics are not well understood. It is also not evident whether com-
plex hadronic excitations can be described in the constituent quark model.

Excited states of hadrons made out of light quarks are known only up
to about 3 GeV. The resonances get broader and are more closely packed
together as their energy increases. At energies >∼ 3 GeV, no further resonance
structures can be recognised. This could perhaps be a region where chaotic
phenomena might be expected. However, they cannot be observed because of
the large width of the resonances.

Collective phenomena have also not yet been observed in hadrons. This
may be due to the fact that the number of effective constituents is too small
to produce coherent phenomena.

Forces of the strong interaction. Elementary particles (quarks and lep-
tons) interact through elementary forces which are mediated by the exchange
of gluons, photons and the W and Z bosons. The forces between systems
with internal structure (atoms, nucleons, constituent quarks) are of a more
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complicated nature and are themselves many-particle phenomena (e.g., the
Van der Waals force or covalent binding forces).

To a first approximation the forces of the strong interaction between nu-
cleons or between constituent quarks may be parametrised by effective forces.
These are short-ranged and may be, depending upon spin and isospin, either
attractive or repulsive. For constituent quarks the short distance interac-
tion seems to be adequately described by one-gluon exchange with an ef-
fective coupling constant αs while at large distances many-gluon exchange
is parametrised by a confinement potential. Two-gluon exchange (Van der
Waals force) and two-quark exchange (covalent bond) presumably play a mi-
nor role in the interaction between two nucleons.

The short-range repulsion is, on the one hand, a consequence of the sym-
metry of the quark wave function of the nucleon, and, on the other hand, of
chromomagnetic repulsion. The dominant part of the attractive nuclear force
is mediated by the exchange of qq pairs. It is not surprising that these pairs
can be identified with the light mesons.

Within the nucleus, this force is also strongly modified by many-body
effects (e. g., the Pauli principle). Hence in nuclear physics calculations, phe-
nomenological forces, whose forms and parameters have to be fitted to ex-
perimental results, are frequently employed.

Nuclei. The idea that nuclei are composed of nucleons is somewhat naive.
It is more realistic to conceive of the constituents of the nucleus as quasi-
nucleons. The properties of these quasi-particles are similar to those of the
nucleons if they are close to the Fermi surface. Some low energy nuclear
phenomena (spin, magnetic moments, excitation energies) can be described
by the properties of individual, weakly bound nucleons in the outermost shells
or by holes in an otherwise closed shell.

Strongly bound nucleons cannot be assigned to individual states of the
shell model. This can be seen, for example, in the very broad states observed
in quasi-elastic scattering. In contradistinction, a strongly bound Λ particle
inside the nucleus can, it seems, be adequately described as a quasi-particle
even in deeply bound states.

Even larger structures in the nucleus may behave like quasi-particles. Pairs
of neutrons or protons can couple in the nucleus to form JP = 0+ pairs, i. e.,
quasi-particles with boson properties. This pairing is suspected to lead to
superfluid phenomena in nuclei, analogous to Cooper pairs in superconduc-
tors and atomic pairs in superfluid 3He. As we have seen, the moments of
inertia of rotational states can be qualitatively described in a two-fluid model
composed of a normal and of a superfluid phase.

Some nuclear properties can be understood as collective excitations. Such
effects can most clearly be observed in heavy nuclei. For example, giant dipole
resonances can be interpreted as density oscillations. A nucleus, since it is a
finite system, may also undergo shape oscillations. In analogy to solid state
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physics, quadrupole excitations are described in terms of phonons. The rota-
tional bands of deformed nuclei have an especially collective nature.

At higher energies the collective and quasi-particle character of the exci-
tations is lost. This is the start of the domain of configuration admixtures,
where states are built from superpositions of collective and/or particle-hole
wave functions. At even higher excitation energies the nuclear level density
increases exponentially with the excitation energy and a quantitative descrip-
tion of the individual levels becomes impossible. The great complexity of the
levels makes a new description using statistical methods possible.

Digestive. In our approach to complex systems we have tried to let ourselves
be guided by our understanding of more elementary systems. This helped us
to gain a deeper insight into the architecture of more complex systems, and
yet we had to introduce new effective building blocks, which mutually interact
via effective forces, to obtain a quantitative treatment of complex phenomena.

Thus in hadron spectroscopy, we used constituent quarks, and not the
quarks from the underlying theory of QCD; the interactions between nu-
cleons are best described in terms of meson exchange, not by the exchange
of gluons and quarks; in the nucleus effective forces are usually employed
instead of the forces known from the nucleon-nucleon interaction and the
richness of collective states in nuclei are, even though we have sketched the
connection to the shell model, quantitatively better described in terms of
collective variables and not in terms of single-particle excitations. This all
means that the best description always seems to come from the framework of
an “effective theory” chosen according to our experimental resolution. This is
by no means a peculiarity of the complex systems of the strong interactions,
but is a general property of many-body systems.

Our modern struggles to improve our understanding are fought on two
fronts: physicists are testing whether the modern standard model of elemen-
tary particle physics is indeed fundamental or itself “just” an effective theory,
and are simultaneously trying to improve our understanding of the regulari-
ties of the complex systems of the strong interaction.

And it shall be, when thou hast made an end of reading
this book, that thou shalt bind a stone to it, and cast it
into the midst of Euphrates:

Jeremiah 51. 63
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Nicht allein in Rechnungssachen
Soll der Mensch sich Mühe machen;
Sondern auch der Weisheit Lehren
Muß man mit Vergnügen hören.

Wilhelm Busch
Max und Moritz (4. Streich)

1.1 Fundamental Constituents of Matter

In their search for the fundamental building blocks of matter, physicists have
found smaller and smaller constituents which in their turn have proven to
themselves be composite systems. By the end of the 19th century, it was
known that all matter is composed of atoms. However, the existence of close to
100 elements showing periodically recurring properties was a clear indication
that atoms themselves have an internal structure, and are not indivisible.

The modern concept of the atom emerged at the beginning of the 20th
century, in particular as a result of Rutherford’s experiments. An atom is
composed of a dense nucleus surrounded by an electron cloud. The nucleus
itself can be decomposed into smaller particles. After the discovery of the
neutron in 1932, there was no longer any doubt that the building blocks
of nuclei are protons and neutrons (collectively called nucleons). The elec-
tron, neutron and proton were later joined by a fourth particle, the neutrino,
which was postulated in 1930 in order to reconcile the description of β-decay
with the fundamental laws of conservation of energy, momentum and angular
momentum.

Thus, by the mid-thirties, these four particles could describe all the then
known phenomena of atomic and nuclear physics. Today, these particles are
still considered to be the main constituents of matter. But this simple, closed
picture turned out in fact to be incapable of describing other phenomena.

Experiments at particle accelerators in the fifties and sixties showed that
protons and neutrons are merely representatives of a large family of particles
now called hadrons. More than 100 hadrons, sometimes called the “hadronic
zoo”, have thus far been detected. These hadrons, like atoms, can be classified
in groups with similar properties. It was therefore assumed that they cannot
be understood as fundamental constituents of matter. In the late sixties, the
quark model established order in the hadronic zoo. All known hadrons could
be described as combinations of two or three quarks.

Figure 1.1 shows different scales in the hierarchy of the structure of mat-
ter. As we probe the atom with increasing magnification, smaller and smaller
structures become visible: the nucleus, the nucleons, and finally the quarks.
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erarchy in atomic structure. To the right,
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Leptons and quarks. The two fundamental types of building blocks are
the leptons, which include the electron and the neutrino, and the quarks. In
scattering experiments, these were found to be smaller than 10−18 m. They
are possibly point-like particles. For comparison, protons are as large as ≈
10−15 m. Leptons and quarks have spin 1/2, i. e. they are fermions. In contrast
to atoms, nuclei and hadrons, no excited states of quarks or leptons have so
far been observed. Thus, they appear to be elementary particles.

Today, however, we know of 6 leptons and 6 quarks as well as their an-
tiparticles. These can be grouped into so-called “generations” or “families”,
according to certain characteristics. Thus, the number of leptons and quarks
is relatively large; furthermore, their properties recur in each generation.
Some physicists believe these two facts are a hint that leptons and quarks
are not elementary building blocks of matter. Only experiment will teach us
the truth.

1.2 Fundamental Interactions

Together with our changing conception of elementary particles, our under-
standing of the basic forces of nature and so of the fundamental interactions
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between elementary particles has evolved. Around the year 1800, four forces
were considered to be basic: gravitation, electricity, magnetism and the barely
comprehended forces between atoms and molecules. By the end of the 19th
century, electricity and magnetism were understood to be manifestations of
the same force: electromagnetism. Later it was shown that atoms have a
structure and are composed of a positively charged nucleus and an electron
cloud; the whole held together by the electromagnetic interaction. Overall,
atoms are electrically neutral. At short distances, however, the electric fields
between atoms do not cancel out completely, and neighbouring atoms and
molecules influence each other. The different kinds of “chemical forces” (e. g.,
the Van-der-Waals force) are thus expressions of the electromagnetic force.

When nuclear physics developed, two new short-ranged forces joined the
ranks. These are the nuclear force, which acts between nucleons, and the
weak force, which manifests itself in nuclear β-decay. Today, we know that
the nuclear force is not fundamental. In analogy to the forces acting between
atoms being effects of the electromagnetic interaction, the nuclear force is a
result of the strong force binding quarks to form protons and neutrons. These
strong and weak forces lead to the corresponding fundamental interactions
between the elementary particles.

Intermediate bosons. The four fundamental interactions on which all
physical phenomena are based are gravitation, the electromagnetic interac-
tion, the strong interaction and the weak interaction.

Gravitation is important for the existence of stars, galaxies, and planetary
systems (and for our daily life), it is of no significance in subatomic physics,
being far too weak to noticeably influence the interaction between elementary
particles. We mention it only for completeness.

According to today’s conceptions, interactions are mediated by the ex-
change of vector bosons, i.e. particles with spin 1. These are photons in elec-
tromagnetic interactions, gluons in strong interactions and the W+, W− and
Z0 bosons in weak interactions. The diagrams on the next page show exam-
ples of interactions between two particles by the exchange of vector bosons:
In our diagrams we depict leptons and quarks by straight lines, photons by
wavy lines, gluons by spirals, and W± and Z0 bosons by dashed lines.

Each of these three interactions is associated with a charge: electric charge,
weak charge and strong charge. The strong charge is also called colour charge
or colour for short. A particle is subject to an interaction if and only if it
carries the corresponding charge:

– Leptons and quarks carry weak charge.
– Quarks are electrically charged, so are some of the leptons (e. g., electrons).
– Colour charge is only carried by quarks (not by leptons).

The W and Z bosons, masses MW ≈ 80 GeV/c2 and MZ ≈ 91 GeV/c2,
are very heavy particles. According to the Heisenberg uncertainty princi-
ple, they can only be produced as virtual, intermediate particles in scattering
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processes for extremely short times. Therefore, the weak interaction is of very
short range. The rest mass of the photon is zero. Therefore, the range of the
electromagnetic interaction is infinite.

The gluons, like the photons, have zero rest mass. Whereas photons, how-
ever, have no electrical charge, gluons carry colour charge. Hence they can
interact with each other. As we will see, this causes the strong interaction to
be also very short ranged.

1.3 Symmetries and Conservation Laws

Symmetries are of great importance in physics. The conservation laws of
classical physics (energy, momentum, angular momentum) are a consequence
of the fact that the interactions are invariant with respect to their canonically
conjugate quantities (time, space, angles). In other words, physical laws are
independent of the time, the location and the orientation in space under
which they take place.

An additional important property in non-relativistic quantum mechanics
is reflection symmetry.1 Depending on whether the sign of the wave function
changes under reflection or not, the system is said to have negative or positive
parity (P ), respectively. For example, the spatial wave function of a bound
system with angular momentum �� has parity P = (−1)�. For those laws
of nature with left-right symmetry, i.e., invariant under a reflection in space
P, the parity quantum number P of the system is conserved. Conservation
of parity leads, e. g., in atomic physics to selection rules for electromagnetic
transitions.

The concept of parity has been generalised in relativistic quantum me-
chanics. One has to ascribe an intrinsic parity P to particles and antipar-
ticles. Bosons and antibosons have the same intrinsic parity, fermions and

1 As is well known, reflection around a point is equivalent to reflection in a plane
with simultaneous rotation about an axis perpendicular to that plane.
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antifermions have opposite parities. An additional important symmetry re-
lates particles and antiparticles. An operator C is introduced which changes
particles into antiparticles and vice versa. Since the charge reverses its sign
under this operation, it is called charge conjugation. Eigenstates of C have
a quantum number C-parity which is conserved whenever the interaction is
symmetric with respect to C.

Another symmetry derives from the fact that certain groups (“multi-
plets”) of particles behave practically identically with respect to the strong
or the weak interaction. Particles belonging to such a multiplet may be de-
scribed as different states of the same particle. These states are characterised
by a quantum number referred to as strong or weak isospin. Conservation
laws are also applicable to these quantities.

1.4 Experiments

Experiments in nuclear and elementary particle physics have, with very few
exceptions, to be carried out using particle accelerators. The development and
construction of accelerators with ever greater energies and beam intensities
has made it possible to discover more and more elementary particles. A short
description of the most important types of accelerators can be found in the
appendix. The experiments can be classified as scattering or spectroscopic
experiments.

Scattering. In scattering experiments, a beam of particles with known en-
ergy and momentum is directed toward the object to be studied (the target).
The beam particles then interact with the object. From the changes in the
kinematical quantities caused by this process, we may learn about the prop-
erties both of the target and of the interaction.

Consider, as an example, elastic electron scattering which has proven to
be a reliable method for measuring radii in nuclear physics. The structure
of the target becomes visible via diffraction only when the de Broglie wave-
length λ=h/p of the electron is comparable to the target’s size. The result-
ing diffraction pattern of the scattered particles yields the size of the nucleus
rather precisely.

Figure 1.1 shows the geometrical dimensions of various targets. To deter-
mine the size of an atom, X-rays with an energy of ≈ 104 eV suffice. Nuclear
radii are measured with electron beams of about 108 eV, proton radii with
electron beams of some 108 to 109 eV. Even with today’s energies, 9 · 1010 eV
for electrons and 1012 eV for protons, there is no sign of a substructure in
either quarks or leptons.

Spectroscopy. The term “spectroscopy” is used to describe those exper-
iments which determine the decay products of excited states. In this way,
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one can study the properties of the excited states as well as the interactions
between the constituents.

From Fig. 1.1 we see that the excitation energies of a system increase
as its size decreases. To produce these excited states high energy particles
are needed. Scattering experiments to determine the size of a system and to
produce excited states require similar beam energies.

Detectors. Charged particles interact with gases, liquids, amorphous solids,
and crystals. These interactions produce electrical or optical signals in these
materials which betray the passage of the particles. Neutral particles are de-
tected indirectly through secondary particles: photons produce free electrons
or electron-positron pairs, by the photoelectric or Compton effects, and pair
production, respectively. Neutrons and neutrinos produce charged particles
through reactions with nuclei.

Particle detectors can be divided into the following categories:

– Scintillators provide fast time information, but have only moderate spatial
resolution.

– Gaseous counters covering large areas (wire chambers) provide good spatial
resolution, and are used in combination with magnetic fields to measure
momentum.

– Semiconductor counters have a very good energy and spatial resolution.
– Čherenkov counters and counters based on transition radiation are used

for particle identification.
– Calorimeters measure the total energy at very high energies.

The basic types of counters for the detection of charged particles are compiled
in Appendix A.2.

1.5 Units

The common units for length and energy in nuclear and elementary particle
physics are the femtometre (fm, or Fermi) and the electron volt (eV). The
Fermi is a standard SI-unit, defined as 10−15 m, and corresponds approxi-
mately to the size of a proton. An electron volt is the energy gained by a
particle with charge 1e by traversing a potential difference of 1 V:

1 eV = 1.602 · 10−19 J . (1.1)

For the decimal multiples of this unit, the usual prefixes are employed: keV,
MeV, GeV, etc. Usually, one uses units of MeV/c2 or GeV/c2 for particle
masses, according to the mass-energy equivalence E = mc2.

Length and energy scales are connected in subatomic physics by the un-
certainty principle. The Planck constant is especially easily remembered in
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the form
� · c ≈ 200 MeV · fm . (1.2)

Another quantity which will be used frequently is the coupling constant
for electromagnetic interactions. It is defined by:

α =
e2

4πε0�c
≈ 1

137
. (1.3)

For historical reasons, it is also called the fine structure constant.
A system of physical quantities which is frequently used in elementary

particle physics has identical dimensions for mass, momentum, energy, inverse
length and inverse time. In this system, the units may be chosen such that
� = c = 1. In atomic physics, it is common to define 4πε0 = 1 and therefore
α = e2 (Gauss system). In particle physics, ε0 = 1 and α = e2/4π is more
commonly used (Heavyside-Lorentz system). However, we will utilise the SI-
system [SY78] used in all other fields of physics and so retain the constants
everywhere.



A Appendix

In the main body of this book we have described particle and nuclear physics
and the underlying interactions concisely and in context. We have here and
there elucidated the basic principles and methods of the experiments that
have led us to this knowledge. We now want to briefly describe the individ-
ual tools of experimental physics – the particle accelerators and detectors
– whose invention and development have often been a sine qua non for the
discoveries discussed here. More detailed discussions may be found in the
literature [Kl92a, Le94, Wi93].

A.1 Accelerators

Particle accelerators provide us with different types of particle beams whose
energies (at the time of writing) can be anything up to a TeV (106 MeV).
These beams serve on the one hand as “sources” of energy which if used
to bombard nuclei can generate a variety of excited states or indeed new
particles. On the other hand they can act as “probes” with which we may
investigate the structure of the target particle.

The most important quantity, whether we want to generate new particles
or excite a system into a higher state, is the centre of mass energy

√
s of the

reaction under investigation. In the reaction of a beam particle a with total
energy Ea with a target particle b which is at rest this is

√
s =

√
2Eambc2 + (m2

a +m2
b)c4 . (A.1)

In high energy experiments where the particle masses may be neglected in
comparison to the beam energy this simplifies to

√
s =

√
2Eambc2 . (A.2)

The centre of mass energy for a stationary target only, we see, grows with
the square root of the beam particle’s energy.

If a beam particle with momentum p is used to investigate the structure
of a stationary target, then the best possible resolution is characterised by
its reduced de Broglie wavelength λ– = �/p. This is related to the energy E
through (4.1).
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All accelerators essentially consist of the following: a particle source, a
structure to actually do the accelerating and an evacuated beam pipe. It
should also be possible to focus and deflect the particle beam. The accelerat-
ing principle is always the same: charged particles are accelerated if they are
exposed to an electric field. A particle with charge Ze which traverses a po-
tential difference U receives an amount of energy, E=ZeU . In the following
we wish to briefly present the three most important types of accelerators.

Electrostatic accelerators. In these accelerators the relation E=ZeU is
directly exploited. The main components of an electrostatic accelerator are
a high voltage generator, a terminal and an evacuated beam pipe. In the
most common sort, the Van de Graaff accelerator, the terminal is usually a
metallic sphere which acts as a capacitor with capacitance C. The terminal
is charged by a rotating, insulated band and this creates a high electric field.
From an earthed potential positive charges are brought onto the band and
then stripped off onto the terminal. The entire set up is placed inside an
earthed tank which is filled with an insulating gas (e.g., SF6) to prevent
premature discharge. The voltage U = Q/C which may be built up in this
way can be as much as 15 MV. Positive ions, produced in an ion source, at
the terminal potential now traverse inside the beam pipe the entire potential
difference between the terminal and the tank. Protons can in this way reach
kinetic energies up to 15 MeV.

Energies twice as high may be attained in tandem Van de Graaff acceler-
ators (Fig. A.1). Here the accelerating potential is used twice over. Negative
ions are first produced at earth potential and then accelerated along a beam
pipe towards the terminal. A thin foil, or similar, placed there strips some of
the electrons off the ions and leaves them positively charged. The accelerat-
ing voltage now enters the game again and protons may in this way attain
kinetic energies of up to 30 MeV. Heavy ions may lose several electrons at
once and consequently reach even higher kinetic energies.

Van de Graaff accelerators can provide reliable, continuous particle beams
with currents of up to 100 μA. They are very important workhorses for nuclear
physics. Protons and both light and heavy ions may be accelerated in them
up to energies at which nuclear reactions and nuclear spectroscopy may be
systematically investigated.

Linear accelerators. GeV-type energies may only be attained by repeat-
edly accelerating the particle. Linear accelerators, which are based upon this
principle, are made up of many accelerating tubes laid out in a straight line
and the particles progress along their central axis. Every pair of neighbour-
ing tubes have oppositely arranged potentials such that the particles between
them are accelerated, while the interior of the tubes is essentially field free
(Wideröe type). A high frequency generator changes the potentials with a
period such that the particles between the tubes always feel an accelerating
force. After passing through n tubes the particles will have kinetic energy
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Fig. A.1. Sketch of a tandem Van de Graaff accelerator. Negative ions are acceler-
ated from the left towards the terminal where some of their electrons are stripped
off and they become positively charged. This causes them to now be accelerated
away from the terminal and the potential difference between the terminal and the
tank is traversed for a second time.

E = nZeU . Such accelerators cannot produce continuous particle beams;
they accelerate packets of particles which are in phase with the generator
frequency.

Since the generator frequency is fixed, the lengths of the various stages
need to be adjusted to fit the speed of the particles as it passes through
(Fig. A.2). If we have an electron beam this last subtlety is only relevant for
the first few acceleration steps, since the small electron mass means that their
velocity is very soon nearly equal to the speed of light. On the other hand

+  – +  – +  ––  + –  + –  + +

Drift tubes

Rf generator

Ion source

Fig. A.2. Sketch of the fundamentals of a (Wideröe type) linear accelerator. The
potentials of the tubes shown are for one particular moment in time. The particles
are accelerated from the source to the first drift tube. The lengths Li of the tubes
and the generator frequency ω must be adjusted to each other so that we have
Li = vi π/ω where vi is the particle velocity at the ith tube. This depends both
upon the generator voltage and the type of particle being accelerated.
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the tube lengths generally need to be continually altered along the entire
length of proton linear accelerators. The final energy of a linear accelerator
is determined by the number of tubes and the maximal potential difference
between them.

At present the largest linear accelerator in the world, where many impor-
tant experiments on deep inelastic scattering off nucleons have been carried
out, is the roughly 3 km long electron linear accelerator at the Stanford Lin-
ear Accelerator Center (SLAC). Here electrons pass through around 100 000
accelerating stages to reach energies of about 50 GeV.

Synchrotrons. While particles pass through each stage of a linear accel-
erator just once, synchrotrons, which have a circular form, may be used to
accelerate particles to high energies by passing them many times through the
same accelerating structures.

The particles are kept on their circular orbits by magnetic fields. The
accelerating stages are mostly only placed at a few positions upon the circuit.
The principle of the synchrotron is to synchronously change the generator
frequency ω of the accelerating stages together with the magnetic field B in
such a way that the particles, whose orbital frequencies and momenta p are
increasing as a result of the acceleration, always feel an accelerating force
and are simultaneously kept on their assigned orbits inside the vacuum pipe.
This means that the following constraints must be simultaneously fulfilled:

ω = n · c
R

· p c
E

n = positive integer (A.3)

B =
p

ZeR
, (A.4)

where R is the radius of curvature of the synchrotron ring. Technical limita-
tions upon the B and ω available mean that one has to inject preaccelerated
particles into synchrotron rings whereupon they can be brought up to their
preassigned final energy. Linear accelerators or smaller synchrotrons are used
in the preacceleration stage. Synchrotrons also only produce packets of par-
ticles and do not deliver continuous beams.

High particle intensities require well focused beams close to the ideal or-
bit. Focusing is also of great importance in the transport of the beam from
the preaccelerator to the main stage and from there to the experiment (injec-
tion and extraction). Magnetic lenses, made from quadrupole magnets, are
used to focus the beam in high energy accelerators. The field of a quadrupole
magnet focuses charged particles in one plane on its central axis and defo-
cuses them on the other plane perpendicular to it. An overall focusing in
both planes may be achieved by putting a second quadrupole magnet, whose
poles are rotated relative to those of the first one through 90◦, after the first
magnet. This principle of strong focusing is similar to the optical combina-
tion of thin diverging and converging lenses which always effectively focuses.
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Fig. A.3. Section (to scale) of a synchrotron from above. The essential accelerating
and magnetic structures are shown together with the beam pipe (continuous line).
High frequency accelerator tubes (K) are usually only placed at a few positions
around the synchrotron. The fields of the dipole magnets (D), which keep the
particles on their circular paths, are perpendicular to the page. Pairs of quadrupole
magnets form doublets which focus the beam. This is indicated by the dotted
lines which (exaggeratedly) show the shape of the beam envelope. The quadrupoles
marked QF have a focusing effect in the plane of the page and the QD quadrupoles
a defocusing effect.

Figure A.3 depicts the essentials of a synchrotron and the focusing effects of
such quadrupole doublets.

Particles accelerated in synchrotrons lose some of their energy to syn-
chrotron radiation. This refers to the emission of photons by any charged
particle which is forced onto a circular path and is thus radially accelerated.
The energy lost to synchrotron radiation must be compensated by the accel-
erating stages. This loss is for highly relativistic particles

−ΔE =
4πα�c

3R
β3γ4 where β =

v

c
≈ 1 and γ =

E

mc2
, (A.5)

per orbit – it increases in other words with the fourth power of the parti-
cle energy E. The mass dependence means that this rate of energy loss is
about 1013 times larger for electrons than for protons of the same energy.
The maximal energy in modern electron synchrotrons is thus about 100 GeV.
Synchrotron radiation does not play an important role for proton beams. The
limit on their final energy is set by the available field strengths of the dipole
magnets which keep the protons in the orbit. Proton energies up to a TeV
may be achieved with superconducting magnets.

There are two types of experiment which use particles accelerated in syn-
chrotrons. The beam may, after it has reached its final energy, be deflected
out of the ring and led off towards a stationary target. Alternatively the beam
may be stored in the synchrotron until it is either loosed upon a thin, internal
target or collided with another beam.
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Storage rings. The centre of mass energy of a reaction involving a stationary
target only grows with the square root of the beam energy (A.2). Much higher
centre of mass energies may be obtained for the same beam energies if we
employ colliding particle beams. The centre of mass energy for a head on
collision of two particle beams with energy E is

√
s = 2E – i.e., it increases

linearly with the beam energy.
The particle density in particle beams, and hence the reaction rate for the

collision of two beams, is very tiny; thus they need to be repeatedly collided in
any experiment with reasonable event rates. High collision rates may, e.g., be
obtained by continuously operating two linear accelerators and colliding the
particle beams they produce. Another possibility is to store particle beams,
which were accelerated in a synchrotron, at their final energy and at the
accelerating stages just top up the energy they lose to synchrotron radiation.
These stored particle beams may be then used for collision experiments.

Consider as an example the HERA ring at the Deutsche Elektronen-
Synchrotron (German Electron Synchrotron, DESY) in Hamburg. This is
made up of two separate storage rings of the same diameter which run par-
allel to each other at about 1 m separation. Electrons are accelerated up to
about 30 GeV and protons to about 920 GeV before storage. The beam tubes
come together at two points, where the detectors are positioned, and the
oppositely circling beams are allowed to collide there.

Construction is rather simpler if one wants to collide particles with their
antiparticles (e.g., electrons and positrons or protons and antiprotons). In
such cases only one storage ring is needed and these equal mass but oppo-
sitely charged particles can simultaneously run around the ring in opposite
directions and may be brought to collision at various interaction points. Ex-
amples of these are the LEP ring (Large Electron Positron Ring) at CERN
where 86 GeV electrons and positrons collide and the SppS (Super Proton An-
tiproton Synchrotron) where 310 GeV protons and antiprotons are brought
violently together. Both of these machines are to be found at the European
Nuclear Research Centre CERN just outside Geneva.

An example of a research complex of accelerators is shown in Fig. A.4;
that of DESY. A total of seven preaccelerators service the DORIS and HERA
storage rings where experiments with electrons, positrons and protons take
place. Two preaccelerator stages are needed for the electron-positron ring
DORIS where the beams each have a maximal energy of 5.6 GeV. Three such
stages are required for the electron-proton ring HERA (30 GeV electrons and
820 GeV protons). DORIS also serves as an source of intensive synchrotron
radiation and is used as a research instrument in surface physics, chemistry,
biology and medicine.
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Fig. A.4. The accelerator complex at the German Electron Synchrotron, DESY,
in Hamburg. The DORIS and HERA storage rings are serviced by a chain of preac-
celerators. Electrons are accelerated up to 450 MeV in the LINAC I or LINAC II
linear accelerators before being injected into the DESY II synchrotron, where they
may reach up to 9 GeV. Thence they either pass into DORIS or the PETRA syn-
chrotron. PETRA acts as a final preaccelerator for HERA and electron energies
of up to 14GeV may be attained there. Before HERA was commissioned PETRA
worked as an electron-positron storage ring with a beam energy of up to 23.5 GeV.
Positrons are produced with the help of electrons accelerated in LINAC II and are
then accumulated in the PIA storage ring before their injection into DESY II where
they are further accelerated and then led off to DORIS. Protons are accelerated
in LINAC III up to 50MeV and then preaccelerated in the proton synchrotron
DESY III up to 7.5 GeV before being injected into PETRA. There they attain
40GeV before being injected into HERA. The HERA ring, which is only partially
shown here, has a circumference of 6336m, while the circumference of PETRA is
2300m and that of DESY II(III) is around 300 m. (Courtesy of DESY )
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A.2 Detectors

The construction and development of detectors for particle and nuclear
physics has, as with accelerator physics, developed into an almost indepen-
dent branch of science. The demands upon the quality and complexity of
these detectors increase with the ever higher particle energies and currents
involved. This has necessarily led to a strong specialisation among the detec-
tors. There are now detectors to measure times, particle positions, momenta
and energies and to identify the particles involved. The principles underly-
ing the detectors are mostly based upon the electromagnetic interactions of
particles with matter, e.g., ionisation processes. We will therefore first briefly
delineate these processes before showing how they are applied in the individ-
ual detectors.

Interaction of particles with matter. If charged particles pass through
matter they lose energy through collisions with the medium. A large part of
this corresponds to interactions with the atomic electron clouds which lead to
the atoms being excited or ionised. The energy lost to ionisation is described
by the Bethe-Bloch formula [Be30, Bl33]. Approximately we have [PD94]

−dE
dx

=
4π
mec2

nz2

β2

(
e2

4πε0

)2 [
ln

2mec
2β2

I · (1 − β2)
− β2

]
(A.6)

where β = v/c, ze and v are the charge and speed of the particle, n is
the electron density and I is the average excitation potential of the atoms
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Fig. A.5. Rough sketch of the average energy loss of charged particles to ionisation
processes in hydrogen, carbon and lead. The energy loss divided by the density of
the material is plotted against p/mc = βγ for the particle in a log-log plot. The
specific energy loss is greater for lighter elements than for heavy ones.
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(typically 16 eV·Z0.9 for nuclear charge numbers Z > 1). The energy loss
thus depends upon the charge and speed of the particle (Fig. A.5) but not
upon its mass. It decreases for small velocities as 1/v2, reaches a minimum
around p/m0c ≈ 4 and then increases only logarithmically for relativistic
velocities. The energy loss to ionisation per length dx traversed normalised
to the density 
 of the matter at the ionisation minimum, and also for higher
particle energies, is roughly 1/
 · dE/dx ≈ 2MeV/(g cm−2).

Electrons and positrons lose energy not just to ionisation but also to a
further important process: bremsstrahlung. Electrons braking in the field of a
nucleus radiate energy in the form of photons. This process strongly depends
upon the material and the energy: it increases roughly linearly with energy
and quadratically with the charge number Z of the medium. Above a crit-
ical energy Ec, which may be coarsely parameterised by Ec ≈ 600MeV/Z,
bremsstrahlung energy loss is more important for electrons than is ionisation.
For such high energy electrons an important material parameter is the radi-
ation length X0. This describes the distance over which the electron energy
decreases due to bremsstrahlung by a factor of e. High energy electrons are
best absorbed in materials with high charge numbers Z; e.g., lead, where the
radiation length is just 0.56 cm.

While charged particles traversing matter lose energy slowly to electro-
magnetic interactions before finally being absorbed, the interaction of a pho-
ton with matter takes place at a point. The intensity I of a photon beam
therefore decreases exponentially with the thickness � of the matter traversed:

I = I0 · e−μ� . (A.7)

The absorption coefficient μ depends upon the photon energy and the type
of matter.

The interaction of photons with matter essentially takes place via one
of three processes: the photoelectric effect, the Compton effect and pair pro-
duction. These processes depend strongly upon the medium and the energy
involved. The photoelectric effect dominates at low energies in the keV range,
the Compton effect for energies from several 100 keV to a few MeV while in
high energy experiments only pair production is of any importance. Here the
photon is converted inside the nuclear field to an electron-positron pair. This
is the dominant process above several MeV. In this energy range the photon
can also be described by the radiation length X0: the conversion length λ of
a high energy photon is λ = 9/7 ·X0. The energy dependence of these three
processes in lead is illustrated in Fig. A.6.

We wish to briefly mention two further processes which are useful in
particle identification: the radiation of Cherenkov light and nuclear reactions.
Cherenkov radiation is photon emission from charged particles that cross
through a medium with a velocity greater than the speed of light in that
medium. These photons are radiated in a cone with angle
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Fig. A.6. The photon absorption coefficient μ in lead divided by the density plotted
against the photon energy. The dashed lines are the contributions of the individual
processes; the photoelectric effect, the Compton effect and pair production. Above
a few MeV pair production plays the dominant role.

θ = arccos
1
β n

(A.8)

around the path of the charged particle (n is the refractive index of the
medium). The energy loss to Cherenkov radiation is small compared to that
through ionisation.

Nuclear reactions are important for detecting neutral hadrons such as
neutrons that do not participate in any of the above processes. Possible re-
actions are nuclear fission and neutron capture (eV – keV range), elastic and
inelastic scattering (MeV range) and hadron production (high energies).

Measuring positions. The ability to measure the positions and momenta
of particles is important in order to reconstruct the kinematics of reactions.
The most common detectors of the paths of particles exploit the energy lost
by charged particles to ionisation.

Bubble chambers, spark chambers, and streamer chambers show us where
particles pass through by making their tracks visible so that they may be pho-
tographed. These pictures have a high illustrative value and possess a certain
aesthetic appeal. Many new particles were discovered in bubble chambers in
particular in the 1950’s and 1960’s. These detectors are nowadays only used
for special applications.



A.2 Detectors 351

x

y

x

ionising
particle

E

Anode
wires

Fig. A.7. Group of three proportional chambers. The anode wires of the layers
marked x point into the page, while those of the y layer run at right angles to
these (dashed line). The cathodes are the edges of the chambers. A positive voltage
applied to the anode wires generates a field like the one sketched in the upper left
hand corner. A particle crossing through the chamber ionises the gas in its path
and the electrons drift along the field lines to the anode wire. In the example shown
a signal would be obtained from one wire in the upper x plane and from two in the
lower x layer.

Proportional counters consist of flat, gas-filled forms in which many thin,
parallel wires (r ≈ 10μm) are arranged. The wires are maintained at a posi-
tive potential of a few kV and are typically arranged at separations of about
2 mm. Charged particles passing through the gas ionise the gas atoms in their
paths and the so-released electrons drift off to the anode wires (Fig. A.7). The
electric field strengths around the thin wires are very high and so the primary
electrons are accelerated and reach kinetic energies such that they themselves
start to ionise the gas atoms. A charge avalanche is let loose which leads to
a measurable voltage pulse on the wire. The arrival time and amplitude of
the pulse are registered electronically. The known position of the wire tells us
where the particle passed by. The spatial resolution in the direction perpen-
dicular to the wires is of the order of half the wire separation. An improved
resolution and a reconstruction of the path in all three spatial coordinates is
in practice obtained by using several layers of proportional counters with the
wires pointing in different directions.

Drift chambers function similarly to proportional chambers. The wires
are, however, at a few centimetres separation. The position of the particle’s
path x is now obtained from the time of the voltage pulse twire on the wire
relative to the time t0 that the particle crossed through the detector. This
latter time has to be measured in another detector. Ideally we should have
the linear relation

x = xwire + vdrift · (twire − t0) , (A.9)
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if the electric field due to additional electrodes, and hence the drift veloc-
ity vdrift of the released electrons in the gas, are very homogeneous. Drift
chambers’ spatial resolution can be as good as 50μm. Several layers are again
required for a three dimensional reconstruction. Wire chambers are very use-
ful for reconstructing paths over large areas. They may be made to cover
several square metres.

Silicon strip detectors are made out of silicon crystals with very thin
electrodes attached to them at separations of about, e.g., 20μm. A charged
particle crossing the wafer produces electron-hole pairs, in silicon this only
requires 3.6 eV per pair. An external voltage collects the charge at the elec-
trodes where it is registered. Spatial resolutions less than 10μm may be
reached in this way.

Measuring momenta. The momenta of charged particles may be deter-
mined with the help of strong magnetic fields. The Lorentz force causes these
particles to follow circular orbits which may then be, e.g., measured in bubble
chamber photographs or reconstructed from several planes of wire chambers.
A “rule of thumb” for the momentum component p⊥ perpendicular to the
magnetic field may be obtained from the measured radius of curvature of the
particle path R and the known, homogeneous magnetic field B:

p⊥ ≈ 0.3 ·B ·R
[
GeV/c
T m

]
. (A.10)

Magnetic spectrometers are used to indirectly determine the radius of
curvature from the angle which the particle is deflected through in the mag-
netic field; one measures the particle’s path before and after the magnets.
This method of measuring the momenta actually has smaller errors than a
direct determination of the radius of curvature would have. The relative ac-
curacy of these measurements typically decreases with increasing momenta
as δ(p)/p ∝ p. This is because the particle path becomes straighter at high
momenta.

Measuring energies. A measurement of the energy of a particle usually
requires the particle to be completely absorbed by some medium. The ab-
sorbed energy is transformed into ionisation, atomic excitations or perhaps
Cherenkov light. This signal which may, with the help of suitable devices, be
transformed into a measurable one is proportional to the original energy of
the particle. The energy resolution depends upon the statistical fluctuations
of the transformation process.

Semiconductor detectors are of great importance in nuclear physics.
Electron-hole pairs created by charged particles are separated by an exter-
nal voltage and then detected as voltage pulses. In germanium only 2.8 eV is
required to produce an electron-hole pair. In silicon 3.6 eV is needed. Semi-
conductor detectors are typically a few millimetres thick and can absorb light
nuclei with energies up to a few tens of MeV. Photon energies are determined



A.2 Detectors 353

through the photoelectric effect – one measures the signal of the absorbed
photoelectron. The large number N of electron-hole pairs that are produced
means that the energy resolution of such semiconductor counters is excellent,
δE/E ∝

√
N/N . For 1 MeV particles it is between 10−3 and 10−4.

Electromagnetic calorimeters may be used to measure the energies of
electrons, positrons and photons above about 100 MeV. One exploits the
cascade of secondary particles that these particles produce via repeated
bremsstrahlung and pair production processes inside the material of the
calorimeter. The production of such a measurable ionisation or visible sig-
nal is illustrated in Fig. A.8. The complete absorption of such a shower in a
calorimeter takes place, depending upon the energy involved, over a distance
of about 15–25 times the radiation length X0. We will consider the example
of homogeneous calorimeters made of NaI(Tl) crystals or lead glass.

NaI doped with small amounts of thallium is an inorganic scintillator in
which charged particles produce visible wavelength photons. These photons
may then be converted into an electric pulse with the help of photomultipliers.
Calorimeters are made from large crystals of NaI(Tl) with photomultipliers
attached to their backs (see Fig. 13.4). The relative energy resolution typically
has values of the order of δE/E ≈ 1−2% / 4

√
E [GeV]. NaI(Tl) is also of

great importance for nuclear-gamma spectroscopy, and hence for energies <∼
1 MeV, since it has a large photon absorption coefficient, particularly for the
photoelectric effect.

Cascade particles in lead glass produce Cherenkov light which may also
be registered with the help of photomultipliers. Lead glass calorimeters may
be built up from a few thousand lead glass blocks, which can cover several
square metres. The transverse dimension of these blocks is adjusted to the
transverse extension of electromagnetic showers, typically a few centimetres.
Energy resolution is typically around δE/E ≈ 3−5% /

√
E [GeV].

Hadronic calorimeters may be used to measure hadronic energies. These
produce a shower of secondary particles (mostly further hadrons) in inelastic
reactions. Such hadronic showers have, compared to electromagnetic showers,
a larger spatial extension and display much larger fluctuations in both the
number and type of secondary particles involved. Sampling calorimeters made
up of alternating layers of a pure absorber material (e.g., iron, uranium) and
a detector material (e.g., an organic scintillator) are used to measure hadron
energies. Only a small fraction of the original particle’s energy is deposited
in the detector material. The energy resolution of hadronic calorimeters is,
both for this reason and because of the large fluctuations in the number of
secondary particles, only about δE/E ≈ 30−80% /

√
E [GeV].

Momentum and energy measurements are interchangeable for highly rela-
tivistic particles (5.6). The accuracy of momentum measurements in magnetic
spectrometers decreases linearly with particle momentum, while the precision
of energy measurements in calorimeters increases as 1/

√
E. Depending upon

the particle type and the particular detector configuration it can make sense
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for particles with momenta above 50–100 GeV/c to measure momenta indi-
rectly through a more accurate energy measurement in a calorimeter.

Identifying particles. The mass and the charge of a particle generally
suffice to identify it. The sign of a particle’s charge may be easily read off
from the particle’s deflection in a magnetic field, but a direct measurement of
the particle’s mass is mostly impossible. There is therefore no general particle
identification recipe; rather lots of different methods, which often use other
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Fig. A.8. Sketch of particle cascade formation inside a calorimeter. An electromag-
netic cascade inside a sampling calorimeter made out of layers of lead and scintillator
is depicted. The lead acts as an absorber material where the bremsstrahlung and
pair production processes primarily take place. The opening angles are, for purposes
of clarity, exaggerated in the diagram. The particle tracks are for the same reason
not continued on into the rearmost layers of the detector. Electrons and positrons
in the scintillator produce visible scintillation light, which through total reflection
inside the scintillator is led off to the sides (large wavy lines) where it is detected
by photomultipliers. The total amount of scintillator light measured is proportional
to the energy of the incoming electron.
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particle properties, are available. In the following we will briefly list those
methods which are used in particle physics for particles with momenta above
about 100 MeV/c.

– Short lived particles may be identified from their decay products with the
help of the method of invariant masses (cf. Sec. 15.1).

– The presence of neutrinos is usually only detected by measuring a deficit
of energy or momentum in a reaction.

– Electrons and photons are recognised through their characteristic electro-
magnetic showers in calorimeters. We may distinguish between them by
putting an ionisation detector (e.g., a scintillator or a wire chamber) in
front of the calorimeter – of the two only an electron will leave an ionisa-
tion trail.

– Muons are identified by their exceptional penetrative powers. They primar-
ily lose energy to ionisation and may be detected with the help of ionisation
chambers placed behind lead plates, which will absorb all other charged
particles.

– Charged hadrons, such as pions, kaons and protons, are the most difficult
particles to distinguish. For them not only a momentum measurement is
required but also a further independent measurement is needed – which
one is best suited depends upon the particle’s momentum.
• The time of flight between two ionisation detectors may be measured for

momenta below 1 GeV/c, since the velocity depends for a fixed momen-
tum upon the mass. A further possibility is to measure the loss of energy
to ionisation – this depends upon the particle velocity. In this range it
varies as 1/v2.

• This latter approach may be extended to 1.5 –50 GeV/cmomenta (where
the energy loss only increases logarithmically as β = v/c) if the measure-
ments are performed repeatedly.

• Various sorts of Cherenkov counters may be used in the range up to
about 100 GeV/c. Threshold Cherenkov counters require a material with
a refractive index n so arranged that only specific particles with a partic-
ular momentum can produce Cherenkov light (cf. A.8). In ring imaging
Cherenkov counters (RICH) the opening angle of the Cherenkov photons
is measured for all the particles and their speed may be calculated from
this. If their momentum is known then this determines their identity.

• Transition radiation detectors may be used for γ=E/mc2 >∼ 100. Transi-
tion radiation is produced when charged particles cross from one material
to another which has a different dielectric constant. The intensity of the
radiation depends upon γ. Thus an intensity measurement can enable us
to distinguish between different hadrons with the same momenta. This
is in fact the only way to identify such particles if the energy of the
hadron is above 100 GeV. Transition radiation may also be employed to
distinguish between electrons and pions. The tiny mass of the electrons
means that this is already possible for energies around 1 GeV.
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– Neutron detection is a special case. (n, α) and (n,p) nuclear reactions are
used to identify neutrons — from those with thermal energies to those with
momenta up to around 20 MeV/c. The charged reaction products have fixed
kinetic energies and these may be measured in scintillation counters or
gas ionisation counters. For momenta between 20 MeV/c and 1 GeV/c one
looks for protons from elastic neutron-proton scattering. The proton target
is generally part of the material of the detector itself (plastic scintillator,
counter gas). At higher momenta only hadron calorimeter measurements
are available to us. The identification is then, however, as a rule not un-
ambiguous.

A detector system. We wish to present as an example of a system of
detectors the ZEUS detector at the HERA storage ring. This detector mea-
sures the reaction products in high energy electron-proton collisions with
centre of mass energies up to about 314 GeV (Fig. A.9). It is so arranged
that apart from the beam pipe region the reaction zone is hermetically cov-
ered. Many different detectors, chosen to optimise the measurement of en-
ergy and momentum and the identification of the reaction products, make
up the whole. The most important components are the wire chambers, which
are arranged directly around the reaction point, and, just outside these, a
uranium-scintillator calorimeter where the energies of electrons and hadrons
are measured to a high precision.
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Fig. A.9. The ZEUS detector at the HERA storage ring in DESY. The electrons
and protons are focused with the help of magnetic lenses (9 ) before they are made to
collide at the interaction point in the centre of the detector. The tracks of charged
reaction products are registered in the vertex chamber (3 ) which surrounds the
reaction point and also in the central track chamber (4 ). These drift chambers are
surrounded by a superconducting coil which produces a magnetic field of up to 1.8 T.
The influence of this magnetic field on the electron beam which passes through it
must be compensated by additional magnets (6 ). The next layer is a uranium-
scintillator calorimeter (1 ) where the energies of electrons, photons and also of
hadrons may be measured to a great accuracy. The iron yoke of the detector (2 ), into
which the magnetic flux of the central solenoid returns, also acts as an absorber for
the backwards calorimeter, where the energy of those high energy particle showers
that are not fully absorbed in the central uranium calorimeter may be measured.
Large area wire chambers (5 ), positioned behind the iron yoke, surround the whole
detector and are used to betray the passage of any muons. These chambers may be
used to measure the muons’ momenta since they are inside either the magnetic field
of the iron yoke or an additional 1.7 T toroidal field (7 ). Finally a thick reinforced
concrete wall (8 ) screens off the experimental hall as far as is possible from the
radiation produced in the reactions. (Courtesy of DESY )
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A.3 Combining Angular Momenta

The combination of two angular momenta |j1m1〉 and |j2m2〉 to form a total
angular momentum |JM〉 must obey the following selection rules:

|j1 − j2| ≤ J ≤ j1 + j2 , (A.11)

M = m1 +m2 , (A.12)

J ≥ |M | . (A.13)

The coupled states may be expanded with the help of the Clebsch-Gordan
coefficients (CGC) (j1j2m1m2|JM) in the |j1 j2 JM〉 basis:

|j1m1〉 ⊗ |j2m2〉 =
J=j1+j2∑

J=|j1−j2|
M=m1+m2

(j1 j2m1m2|JM) · |j1 j2 JM〉. (A.14)

The probability that the combination of two angular momenta |j1m1〉 and
|j2m2〉 produces a system with total angular momentum |JM〉 is thus the
square of the corresponding CGC’s.

The corollary

|j1 j2 JM〉 =
m1=+j1∑

m1=−j1
m2=M−m1

(j1 j2m1m2|JM) · |j1m1〉 ⊗ |j2m2〉 , (A.15)

also holds. For a system |JM〉, which has been produced from a combina-
tion of two angular momenta j1 and j2, the square of the CGC’s gives the
probability that the individual angular momenta may be found in the states
|j1m1〉 and |j2m2〉.

Equations (A.14) and (A.15) may also be applied to isospin. Consider, for
example, the Δ+ baryon (I = 3/2, I3 = +1/2) which can decay into p + π0

or n + π+. The branching ratio can be found to be

B(Δ+ → p + π0)
B(Δ+ → n + π+)

=

∣
∣( 1

2 1 + 1
2 0 | 3

2 + 1
2 )

∣
∣2

∣
∣( 1

2 1 − 1
2 +1 | 3

2 +1
2 )

∣
∣2

=

(√
2
3

)2

(√
1
3

)2 = 2. (A.16)

The CGC’s are listed for combinations of low angular momenta. The
values for j1 = 1/2 and j2 = 1 may be found with the help of the general
phase relation

(j2 j1m2m1|JM) = (−1)j1+j2−J · (j1 j2m1m2|JM) . (A.17)
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j1 = 1/2 j2 = 1/2
m1 m2 J M CGC

1/2 1/2 1 1 +1

1/2 −1/2 1 0 +
√

1/2

1/2 −1/2 0 0 +
√

1/2

−1/2 1/2 1 0 +
√

1/2

−1/2 1/2 0 0 −
√

1/2
−1/2 −1/2 1 −1 +1

j1 = 1 j2 = 1/2
m1 m2 J M CGC

1 1/2 3/2 3/2 +1

1 −1/2 3/2 1/2 +
√

1/3

1 −1/2 1/2 1/2 +
√

2/3

0 1/2 3/2 1/2 +
√

2/3

0 1/2 1/2 1/2 −
√

1/3

0 −1/2 3/2 −1/2 +
√

2/3

0 −1/2 1/2 −1/2 +
√

1/3

−1 1/2 3/2 −1/2 +
√

1/3

−1 1/2 1/2 −1/2 −
√

2/3
−1 −1/2 3/2 −3/2 +1

j1 = 1 j2 = 1
m1 m2 J M CGC

1 1 2 2 +1

1 0 2 1 +
√

1/2

1 0 1 1 +
√

1/2

1 −1 2 0 +
√

1/6

1 −1 1 0 +
√

1/2

1 −1 0 0 +
√

1/3

0 1 2 1 +
√

1/2

0 1 1 1 −
√

1/2

0 0 2 0 +
√

2/3
0 0 1 0 0

0 0 0 0 −
√

1/3

0 −1 2 −1 +
√

1/2

0 −1 1 −1 +
√

1/2

−1 1 2 0 +
√

1/6

−1 1 1 0 −
√

1/2

−1 1 0 0 −
√

1/3

−1 0 2 −1 +
√

1/2

−1 0 1 −1 −
√

1/2
−1 −1 2 −2 +1
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A.4 Physical Constants

Table A.1. Physical constants [Co87, La95, PD98]. The numbers in brackets signify
the uncertainty in the last decimal places. The sizes of c, μ0 (and hence ε0) are
defined by the units “metre” and “ampere” [Pe83]. These constants are therefore
error free.

Constants Symbol Value

Speed of light c 2.997 924 58 · 108 m s−1

Planck’s constant h 6.626 075 5 (40) · 10−34 J s
� = h/2π 1.054 572 66 (63) · 10−34 J s

= 6.582 122 0 (20) · 10−22 MeV s
�c 197.327 053 (59) MeV fm
(�c)2 0.389 379 66 (23) GeV2 mbarn

Atomic mass unit u = M12C/12 931.494 32 (28) MeV/c2

Mass of the proton Mp 938.272 31 (28) MeV/c2

Mass of the neutron Mn 939.565 63 (28) MeV/c2

Mass of the electron me 0.510 999 06 (15) MeV/c2

Elementary charge e 1.602 177 33 (49) · 10−19 As
Dielectric constant ε0 = 1/μ0c

2 8.854 187 817 · 10−12 As/V m
Permeability of vacuum μ0 4π · 10−7 Vs/A m
Fine structure constant α = e2/4πε0�c 1/137.035 989 5 (61)

Class. electron radius re = α�c/mec
2 2.817 940 92 (38) · 10−15 m

Compton wavelength λ–e = re/α 3.861 593 23 (35) · 10−13 m
Bohr radius a0 = re/α2 5.291 772 49 (24) · 10−11 m

Bohr magneton μB = e�/2me 5.788 382 63 (52) · 10−11 MeV T−1

Nuclear magneton μN = e�/2mp 3.152 451 66 (28) · 10−14 MeV T−1

Magnetic moment μe 1.001 159 652 193 (10) μB

μp 2.792 847 386 (63) μN

μn −1.913 042 75 (45) μN

Avogadro’s number NA 6.022 136 7 (36) · 1023 mol−1

Boltzmann’s constant k 1.380 658 (12) · 10−23 J K−1

= 8.617 385 (73) · 10−5 eV K−1

Gravitational constant G 6.672 59 (85) · 10−11 Nm2 kg−2

G/�c 6.707 11 (86) · 10−39 (GeV/c2)−2

Fermi constant GF/(�c)3 1.166 39 (1) · 10−5 GeV−2

Weinberg angle sin2 θW 0.231 24 (24)
Mass of the W± MW 80.41 (10) GeV/c2

Mass of the Z0 MZ 91.187 (7) GeV/c2

Strong coupling const. αs(M
2
Zc2) 0.119 (2)



Solutions to the Problems

Chapter 2

1. Proton repulsion in 3He:

VC = −�cα
R = (M3He −M3H) · c2 − (Mn −Mp) · c2

= Emax
β − (Mn −Mp −me) · c2 .

This yields R = 1.88 fm. The β-decay recoil and the difference between
the atomic binding energies may be neglected.

Chapter 3

1. a) At Saturn we have t/τ = 4 yrs/127 yrs and we require

N0
1
τ

e−t/τ · 5.49 MeV · 0.055 = 395 W

power to be available. This implies N0 = 3.4 · 1025 nuclei, which means
13.4 kg 238Pu.

b) At Neptune (after 12 years) 371 W would be available.
c) The power available from radiation decreases as 1/r2. Hence at Saturn

395 W power would require an area of 2.5·103 m2 and 371 W at Neptune
could be produced by an area of 2.3 · 104 m2. This would presumably
lead to construction and weight problems.

2. a) Applying the formula N = N0e−λt to both uranium isotopes leads to

99.28
0.72

=
e−λ238t

e−λ235t
which yields: t = 5.9 · 109 years.

Uranium isotopes, like all heavy (A >∼ 56) elements, are produced in
supernova explosions. The material which is so ejected is used to build
up new stars. The isotopic analysis of meteorites leads to the age of the
solar system being 4.55 · 109 years.

b) After 2.5 · 109 years, (1− e−λt) of the nuclei will have decayed. This is
32 %.
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c) Equation (2.8) yields that a total of 51 MeV is released in the 238U→
206Pb decay chain. In spontaneous fission 190 MeV is set free.

3. a)

A2(t) = N0,1 · λ1 ·
λ2

λ2 − λ1

(
e−λ1t − e−λ2t

)

for large times t, because of λ1  λ2:

A2(t) = N0,1 · λ1.

b) The concentration of 238U in concrete can thus be found to be

room volume V : 400 m3

eff. concrete volume VB: 5.4 m3 =⇒ 
U =
V ·A
VB · λ238

= 1.5 ·1021 atoms

m3
.

4. Nuclear masses for fixed A depend quadratically upon Z. From the defini-
tions in (3.6) the minimum of the parabola is at Z0 = β/2γ. The constant
aa in β and γ is part of the asymmetry term in the mass formula (2.8) and,
according to (17.12), does not depend upon the electromagnetic coupling
constant α. The “constant” ac, which describes the Coulomb repulsion
and enters the definition of γ, is on the other hand proportional to α and
may be written as: ac = κα. Inserting this into Z0 = β/2γ yields

Z0 =
β

2
(
aa/A+ κα/A1/3

) =⇒ 1
α

=
2κAZ0

A1/3 (Aβ − 2aaZ0)
.

Assuming that the minimum of the mass formula is exactly at the given
Z one finds 1/α values of 128, 238 and 522 for the 186

74W, 186
82Pb and 186

88Ra
nuclides. Stable 186

94Pu cannot be obtained just by “twiddling” α.

5. The energy E released in A
ZX → A−4

Z−2Y + α is

E = B(α) − δB where δB = B(X) −B(Y).

Note that we have here neglected the difference in the atomic binding en-
ergies. If we further ignore the pairing energy, which only slightly changes,
we obtain

E = B(α) − ∂B

∂Z
δZ − ∂B

∂A
δA = B(α) − 2

∂B

∂Z
− 4

∂B

∂A

= B(α) − 4av +
8
3
as

1
3A1/3

+ 4ac
Z

A1/3

(
1 − Z

3A

)
− aa

(
1 − 2Z

A

)2

.

Putting in the parameters yields E > 0 if A >∼ 150. Natural α-activity
is only significant for A >∼ 200, since the lifetime is extremely long for
smaller mass numbers.

6. The mother nucleus and the α particle are both 0+ systems which implies
that the spin J and parity P of a daughter nucleus with orbital angular
momentum L and spatial wave function parity (−1)L must combine to
0+. This means that JP = 0+, 1−, 2+, 3−, · · · are allowed.
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Chapter 4

1. a) In analogy to (4.5) the reaction rate must obey Ṅ = σṄdnt, where
Ṅd signifies the deuteron particle current and nt is the particle areal
density of the tritium target. The neutron rate found in any solid angle
element dΩ must then obey

dṄ =
dσ
dΩ

dΩ Ṅd nt =
dσ
dΩ

F

R2

Id
e

μt

mt
NA ,

where e is the elementary electric charge, mt is the molar mass of
tritium and NA is Avogadro’s number.
Inserting the numbers yields dṄ = 1444 neutrons/s.

b) Rotating the target away from the orthogonal increases the effective
particle area density “seen” by the beam by a factor of 1/ cos θ. A
rotation through 10◦ thus increases the reaction rate by 1.5 %.

2. The number N of beam particles decreases according to (4.5) with the
distance x covered as e−x/λ where λ = 1/σn is the absorbtion length.
a) Thermal neutrons in cadmium: We have

nCd = 
Cd
NA

ACd

where the atomic mass of cadmium is given by ACd = 112.40 g mol−1.
We thus obtain

λn,Cd = 9μm .

b) For highly energetic photons in lead one may find in an analogous
manner (APb = 207.19 g mol−1)

λγ,Pb = 2.0 cm .

c) Antineutrinos predominantly react with the electrons in the earth.
Their density is

ne,earth = 
earth

(
Z

A

)

earth

NA.

We therefore obtain

λν/earth = 6.7 · 1016 m ,

which is about 5 · 109 times the diameter of the planet.
Note: the number of beam particles only decreases exponentially with
distance if one reaction leads to the beam particles being absorbed; a
criterion which is fulfilled in the above examples. The situation is different
if k � 1 reactions are needed (e.g., α particles in air). In such cases the
range is almost constant L = k/σn.
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Chapter 5

1. a) From Q2 = −(p− p′)2 and (5.13) one finds

Q2 = 2M(E − E′),

with M the mass of the heavy nucleus. This implies that Q2 is largest
at the smallest value of E′, i.e., θ = 180◦. The maximal momentum
transfer is then from (5.15)

Q2
max =

4E2M

Mc2 + 2E
,

b) From (5.15) we find for θ = 180◦ that the energy transfer ν = E − E′

is

ν = E

(

1 − 1
1 + 2 E

Mc2

)

=
2E2

Mc2 + 2E
.

The energy of the backwardly scattered nucleus is then

E′
nucleus = Mc2 + ν = Mc2 +

2E2

Mc2 + 2E

and its momentum is

∣
∣P ′∣∣ =

√

Q2
max +

ν2

c2
=

√
4ME2

Mc2 + 2E
+

4E4

c2(Mc2 + 2E)2
.

c) The nuclear Compton effect may be calculated with the help of Δλ =
h

Mc (1 − cos θ). The same result as for electron scattering is obtained
since we have neglected the electron rest mass in a) and b) above.

2. Those α particles which directly impinge upon the 56Fe nucleus are ab-
sorbed. Elastically scattered α particles correspond to a “shadow scatter-
ing” which may be described as Fraunhofer diffraction upon a disc. The
diameter D of the disc is found to be

D = 2( 3
√

4 + 3
√

56) · 0.94 fm ≈ 10 fm .

In the literature D is mostly parameterised by the formula D = 2 3
√
A ·

1.3 fm, which gives the same result. The wavelength of the α particles is
λ = h/p, where p is to be understood as that in the centre of mass system
of the reaction. Using pc = 840 MeV one finds λ = 1.5 fm.
The first minimum is at θ = 1.22λ/D ≈ 0.18 ≈ 10.2◦. The intensity dis-
tribution of the diffraction is given by the Bessel function j0. The further
minima correspond to the nodes of this Bessel function.
The scattering angle ought, however, to be given in the laboratory frame
and is given by θlab ≈ 9.6◦.
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3. The smallest separation of the α particles from the nucleus is s(θ) =
a + a

sin θ/2 for the scattering angle θ. The parameter a is obtained from
180◦ scattering, since the kinetic energy is then equal to the potential
energy:

Ekin =
∣
∣
∣
∣
zZe2�c

4πε0�c2a

∣
∣
∣
∣ .

For 6 MeV α scattering off gold, we have a = 19 fm and s = 38 fm.
For deviations from Rutherford scattering to occur, the α-particles must
manage to get close to the nuclear forces, which can first happen at a
separation R = Rα + RAu ≈ 9 fm. A more detailed discussion is given in
Sec. 18.4. Since s � R no nuclear reactions are possible between 6 MeV
α particles and gold and no deviation from the Rutherford cross-section
should therefore be expected. This would only be possible for much lighter
nuclei.

4. The kinetic energy of the electrons may be found as follows:

�
√

2MαE
kin
α

≈ λ–α
!= λ– e ≈

�c

Ekin
e

=⇒ Ekin
e ≈

√
2Mαc

2Ekin
α = 211 MeV .

The momentum transfer is maximal for scattering through 180◦. Neglect-
ing the recoil we have

|q|max = 2|pe| =
2�

λ– e
≈ 2

√
2MαE

kin
α = 423 MeV/c ,

and the variable α in Table 5.1 may be found with the help of (5.56) to
be

αmax =
|q|maxR

�
=

423 MeV · 1.21 · 3
√

197 fm
197MeV fm

= 15.1 .

The behaviour of the function 3α−3 (sinα− α cosα) from Table 5.1 is
such that it has 4 zero points in the range 0 < α ≤ 15.1.

5. Electrons oscillate most in the field of the X-rays since Mnuclear � me.
As in the H atom, the radial wave function of the electrons also falls off
exponentially in He. Hence, just as for electromagnetic electron scattering
off nucleons, a dipole form factor is observed.

6. If a 511 keV photon is Compton scattered through 30◦ off an electron at
rest, the electron receives momentum, pe = 0.26MeV/c. From the virial
theorem an electron bound in a helium atom must have kinetic energy
Ekin = −Epot/2 = −Etot = 24 eV, which implies that the momentum of
the Compton electron is smeared out with Δp ≈ ±5 · 10−3 MeV/c which
corresponds to an angular smearing of Δθe ≈ Δp/p = ±20 mrad ≈ ±1◦.
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Chapter 6

1. The form factor of the electron must be measured up to |q| ≈ �/r0 =
200 GeV/c. One thus needs

√
s = 200 GeV, i.e., 100 GeV. colliding beams.

For a target at rest, 2mec
2E = s implies that 4 · 107 GeV (!) would be

needed.

2. Since the pion has spin zero, the magnetic form factor vanishes and we
have (6.10):

dσ(eπ → eπ)
dΩ

=
(

dσ
dΩ

)

Mott

G2
E,π(Q2)

G2
E,π(Q2) ≈

(
1 − Q2 〈r2〉π

6 �2

)2

= 1 − 3.7
Q2

GeV2/c2
.

Chapter 7

1. a) The photon energy in the electron rest frame is obtained through a
Lorentz transformation with dilatation factor γ = 26.67 GeV/mec

2.
This yields Ei = 2γ Eγ = 251.6 keV for Eγ = 2π�c/λ = 2.41 eV.

b) Photon scattering off a stationary electron is governed by the Compton
scattering formula:

Ef (θ) =
(

1 − cos θ
mc2

+
1
Ei

)−1

,

where Ef (θ) is the energy of the photon after the scattering and θ
is the scattering angle. Scattering through 90◦ (180◦) leads to Ef =
168.8 (126.8) keV.
After the reverse transformation into the laboratory system, we have
the energy E′

γ :

E′
γ(θ) = γ Ef (θ) (1 − cos θ) = γ

(
1
mc2

+
1

Ei(1 − cos θ)

)−1

.

For the two cases of this example, E′
γ takes on the values 8.80

(13.24) GeV. The scattering angle in the laboratory frame θlab is also
180◦, i.e., the outgoing photon flies exactly in the direction of the elec-
tron beam. Generally we have

θlab = π − 1
γ tan θ

2

.

c) For θ = 90◦ this yields θlab = π − 1/γ = π − 19.16 μrad. The spatial
resolution of the calorimeter must therefore be better than 1.22 mm.
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2. Comparing the coefficients in (6.5) and (7.6) yields

2W1

W2
= 2τ where τ =

Q2

4m2c2
,

and m is the mass of the target. Replacing W1 by F1/Mc
2 and W2 by

F2/ν means that we can write

ν

Mc2
· F1

F2
=

Q2

4m2c2
.

Since we consider elastic scattering off a particle with mass m we have
Q2 = 2mν and thus

m =
Q2

2ν
= x ·M since x =

Q2

2Mν
.

Inserting this mass into the above equation yields (7.13).

3. a) The centre of mass energy of the electron-proton collision calculated
from

s = (ppc+ pec)2 = m2
pc

4 +m2
ec

4 + 2(EpEe − pp · pec
2) ≈ 4EpEe

is
√
s = 314GeV, if we neglect the electron and proton masses. For a sta-

tionary proton target (Ep = mpc
2; pp = 0) the squared centre of mass

energy of the electron-proton collision is found to be s ≈ 2Eempc
2 .

The electron beam energy would have to be

Ee =
s

2mpc2
= 52.5 TeV

to attain a centre of mass energy
√
s = 314GeV.

b) Consider the underlying electron-quark scattering reaction e(Ee) +
q(xEp) → e(E′

e) + q(E′
q), where the bracketed quantities are the par-

ticle energies. Energy and momentum conservation yield the following
three relations:

(1) Ee + xEp = E′
e + E′

q overall energy
(2) E′

e sin θ/c = E′
q sin γ/c transverse momentum

(3) (xEp − Ee)/c = (E′
q cos γ − E′

e cos θ)/c longitudinal momentum

Q2 may be expressed in terms of the electron parameters Ee , E′
e and

θ as (6.2)
Q2 = 2EeE

′
e(1 − cos θ)/c2 .

We now want to replace E′
e with the help of (1) – (3) by Ee, θ and γ.

After some work we obtain
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E′
e =

2Ee sin γ
sin θ + sin γ − sin (θ − γ)

and thus

Q2 =
4E2

e sin γ(1 − cos γ)
[sin θ + sin γ − sin (θ − γ)] c2 .

Experimentally the scattering angle γ of the scattered quark may be
expressed in terms of the energy-weighted average angle of the hadro-
nisation products

cos γ =
∑

iEi cos γi∑
iEi

.

c) The greatest possible value of Q2 is Q2
max = s/c2. This occurs for

electrons scattering through θ = 180◦ (backwards scattering) when
the energy is completely transferred from the proton to the electron,
E′

e = Ep. At HERA Q2
max = 98 420 GeV2/c2, while for experiments

with a static target and beam energy E = 300 GeV we have Q2
max =

2Eemp ≈ 600 GeV2/c2. The spatial resolution is Δx � �/Q which
for the cases at hand is 0.63 · 10−3 fm and 7.9 · 10−3 fm respectively,
i.e., a thousandth or a hundredth of the proton radius. In practice the
fact that the cross-section falls off very rapidly at large Q2 means that
measurements are only possible up to about Q2

max/2.
d) The minimal value of Q2 is obtained at the minimal scattering an-

gle (7◦) and for the minimal energy of the scattered electron (5 GeV).
From (6.2) we obtain Q2

min ≈ 2.2GeV2/c2. The maximal value of Q2

is obtained at the largest scattering angle (178◦) and maximal scatter-
ing energy (820 GeV). This yields Q2

max ≈ 98 000GeV2/c2. The corre-
sponding values of x are obtained from x = Q2/2Pq, where we have to
substitute the four-momentum transfer q by the four-momenta of the
incoming and scattered electron. This gives us xmin ≈ 2.7 · 10−5 and
xmax ≈ 1.

e) The transition matrix element and hence the cross-section of a reaction
depend essentially upon the coupling constants and the propagator
(4.23, 10.3). We have

σem ∝ e2

Q4
, σweak ∝ g2

(Q2 +M2
Wc

2)2
.

Equating these expressions and using e = g sin θW (11.14f) implies that
the strengths of the electromagnetic and weak interactions will be of
the same order of magnitude for Q2 ≈M2

Wc
2 ≈ 104 GeV2/c2.

4. a) The decay is isotropic in the pion’s centre of mass frame (marked by
a circumflex) and we have p̂μ = −p̂ν . Four-momentum conservation
p2π = (pμ + pν)2 implies
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|p̂μ| =
m2

π −m2
μ

2mπ
c ≈ 30 MeV/c and thus

Êμ =
√

p̂2
μc

2 +m2
μc

4 ≈ 110 MeV .

Using β ≈ 1 and γ = Eπ/mπc
2, the Lorentz transformations of Êμ

into the laboratory frame for muons emitted in the direction of the
pion’s flight (“forwards”) and for those emitted in the opposite direction
(“backwards”) are

Eμ = γ
(
Êμ ± β|p̂μ|c

)
=⇒

{
Eμ,max ≈ Eπ ,
Eμ,min ≈ Eπ(mμ/mπ)2 .

The muon energies are therefore: 200 GeV <∼ Eμ
<∼ 350 GeV.

b) In the pion centre of mass frame the muons are 100 % longitudinally
polarised because of the parity violating nature of the decay (Sec. 10.7).
This polarisation must now be transformed into the laboratory frame.
Consider initially just the “forwards” decays: the pion and muon mo-
menta are parallel to the direction of the transformation. Such a Lorentz
transformation will leave the spin unaffected and we see that these
muons will also be 100 % longitudinally polarised, i.e., Plong = 1.0 .
Similarly for decays in the “backwards” direction we have Plong = −1.0.
The extremes of the muon energies thus lead to extreme values of the
polarisation. If we select at intermediate muon energies we automati-
cally vary the longitudinal polarisation of the muon beam. For exam-
ple 260 GeV muon beams have Plong = 0 . The general case is given in
[Le68]. Plong depends upon the muon energy as

Plong =
u−

[
(m2

μ/m
2
π)(1 − u)

]

u+
[
(m2

μ/m
2
π)(1 − u)

] where u =
Eμ − Eμ,min

Eμ,max − Eμ,min
.

5. The squared four momentum of the scattered parton is (q+ ξP )2 = m2c2,
wherem is the mass of the parton. Expanding and multiplying with x2/Q2

yields
x2M2c2

Q2
ξ2 + xξ − x2

(
1 +

m2c2

Q2

)
= 0

Solving the quadratic equation for ξ and employing the approximate for-
mula given in the question yields the result we were asked to obtain. For
m = xM we have x = ξ. In a rapidly moving frame of reference we also
have x = ξ, since the masses m and M can then be neglected.

Chapter 8

1. a) From x = Q2/2Mν we obtain x >∼ 0.003 .
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b) The average number of resolved partons is given by the integral over
the parton distributions from xmin to 1. The normalisation constant,
A, has to be chosen such that the number of valence quarks is exactly
3. One finds:

Sea quarks Gluons
x > 0.3 0.005 0.12
x > 0.03 0.4 4.9

Chapter 9

1. a) The relation between the event rate Ṅ , the cross-section σ and the
luminosity L is from (4.13): Ṅ = σ · L. Therefore using (9.5)

Ṅμ+μ− =
4πα2

�
2c2

3 · 4E2
· L = 0.14/s .

At this centre of mass energy,
√
s = 8GeV, it is possible to produce

pairs of u, d, s and c-quarks. The ratio R defined in (9.10) can therefore
be calculated using (9.11) and we so obtain R = 10/3 . This implies

Ṅhadrons =
10
3

· Ṅμ+μ− = 0.46/s .

b) At
√
s = 500 GeV pair creation of all 6 quark flavours is possible. The

ratio is thus R = 5. To reach a statistical accuracy of 10% one would
need to detect 100 events with hadronic final states. From Nhadrons =
5 · σμ+μ− · L · t we obtain L = 8 · 1033 cm−2 s−1. Since the cross-section
falls off sharply with increasing centre of mass energies, future e+e−-
accelerators will need to have luminosities of an order 100 times larger
than present day storage rings.

2. a) From the supplied parameters we obtain δE = 1.9 MeV and thus
δW =

√
2 δE = 2.7 MeV. Assuming that the natural decay width of

the Υ is smaller than δW , the measured decay width, i.e., the energy
dependence of the cross-section, merely reflects the uncertainty in the
beam energy (and the detector resolution). This is the case here.

b) Using λ– = �/|p| ≈ (�c)/E we may re-express (9.8) as

σf (W ) =
3π�

2c2Γe+e−Γf

4E2 [(W −MΥ c2)2 + Γ 2/4]
.

In the neighbourhood of the (sharp) resonance we have 4E2 ≈ M2
Υ c

4.
From this we obtain

∫
σf (W ) dW =

6π�
2c2Γe+e−Γf

M2
Υ c

4 Γ
.
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The measured quantity was
∫
σf (W ) dW for Γf = Γhad. Using Γhad =

Γ−3Γ�+�− = 0.925Γ we find Γ = 0.051 MeV for the total natural decay
width of the Υ . The true height of the resonance ought therefore to be
σ(W = MΥ ) ≈ 4100 nb (with Γf = Γ ). The experimentally observed
peak was, as a result of the uncertainty in the beam energy, less than
this by a factor of over 100 (see Part a).

Chapter 10

1. p + p → . . . strong interaction.
p + K− → . . . strong interaction.
p + π− → . . . baryon number not conserved, so reaction impossible.
νμ + p → . . . weak interaction, since neutrino participates.
νe + p → . . . Le not conserved, so reaction impossible
Σ0 → . . . electromagnetic interaction, since photon radiated off.

2. a) • C|γ〉 = −1|γ〉. The photon is its own antiparticle. Its C-parity is −1
since it couples to electric charges which change their sign under the
C-parity transformation.

• C|π0〉 = +1|π0〉, since π0 → 2γ and C-parity is conserved in the
electromagnetic interaction.

• C|π+〉 = |π−〉, not a C-eigenstate.
• C|π−〉 = |π+〉, not a C-eigenstate.
• C(|π+〉 − |π−〉) = (|π−〉 − |π+〉) = −1(|π−〉 − |π+〉), C-eigenstate.
• C|νe〉 = |νe〉, not a C-eigenstate.
• C|Σ0〉 = |Σ0〉, not a C-eigenstate.

b) • Pr = −r
• Pp = −p
• PL = L since L = r × p
• Pσ = σ, since σ is also angular momentum;
• PE = −E, positive and negative charges are (spatially) flipped by
P the field vector thus changes its direction;

• PB = B, magnetic fields are created by moving charges, the sign of
the direction of motion and of the position vector are both flipped
(cf. Biot-Savart law: B ∝ qr×v/|r|3).

• P(σ · E) = −σ · E
• P(σ · B) = σ · B
• P(σ · p) = −σ · p
• P(σ · (p1 × p2)) = σ · (p1 × p2)

3. a) Since pions have spin 0, the spin of the f2-meson must be transferred
into orbital angular momentum for the pions, i.e., � = 2. Since P =
(−1)�, the parity of the f2-meson is P = (−1)2 ∗ P 2

π = +1. Since the
parity and C-parity transformations of the f2-decay both lead to the



372 Solutions to Chapter 10

same state (spatial exchange of π+/π− and exchange of the π-charge
states) we have C = P = +1 for the f2-meson.

b) A decay is only possible if P and C are conserved by it. Since
C|π0〉|π0〉 = +1|π0〉|π0〉 and the angular momentum argument of a)
remains valid (� = 2 → P = +1), the decay f2 → π0π0 is allowed. For
the decay into two photons we have: C|γ〉|γ〉 = +1. The total spin of
the two photons must be 2 � and the z-component Sz = ±2. There-
fore one of the two photons must be left handed and the other right
handed. (Sketch the decay in the centre of mass system and draw in
the momenta and spins of the photons!) Only a linear combination of
Sz = +2 and Sz = −2 can fulfill the requirement of parity conservation,
e.g., the state (|Sz = +2〉 + |Sz = −2〉). Applying the parity operator
to this state yields the eigenvalue +1. This means that the decay into
two photons is also possible.

4. a) The pion decays in the centre of mass frame into a charged lepton with
momentum p and a neutrino with momentum −p. Energy conservation
suppliesmπc

2 =
√
m2

�c
4 + |p|2c2+|p|c. For the charged lepton we have

E2
� = m2

�c
4 + |p|2c2. Taking v/c = |p|c/E� one obtains from the above

relations

1 − v

c
=

2m2
�

m2
π +m2

�

=
{

0.73 for μ+

0.27 · 10−4 for e+ .

b) The ratio of the squared matrix elements is

|Mπe|2
|Mπμ|2

=
1 − ve/c
1 − vμ/c

=
m2

e

m2
μ

m2
π +m2

μ

m2
π +m2

e

= 0.37 · 10−4 .

c) We need to calculate 
(E0) = dn/dE0 = dn/d|p| · d|p|/dE0 ∝
|p|2d|p|/dE0. From the energy conservation equation (see Part a) we
find d|p|/dE0 = 1 + v/c = 2m2

π/(m
2
π + m2

�) and |p�| = c(m2
π −

m2
�)/(2mπ). Putting it together we get


e(E0)

μ(E0)

=
(m2

π −m2
e)

2

(m2
π −m2

μ)2
(m2

π +m2
e)

2

(m2
π +m2

μ)2
= 3.49 .

Therefore the phase space factor for the decay into the positron is
larger.

d) The ratio of the partial decay widths now only depends upon the masses
of the particles involved and turns out to be

Γ (π+ → e+ν)
Γ (π+ → μ+ν)

=
m2

e

m2
μ

(m2
π −m2

e)
2

(m2
π −m2

μ)2
= 1.28 · 10−4 .

This value is in good agreement with the experimental result.
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Chapter 11

1. The total width Γtot of Z0 may be written as

Γtot = Γhad + 3Γ� +NνΓν

and Γν/Γ� = 1.99 (see text). From (11.9) it follows that

σmax
had =

12π(�c)2

M2
Z

ΓeΓhad

Γtot
.

Solving for Γtot and inserting it into the above formula yields from the
experimental results Nν = 2.96. Varying the experimental results inside
the errors only changes the calculated value of Nν by about ±0.1 .

Chapter 13

1. The reduced mass of positronium is me/2. From (13.4) we thus find the
ground state (n = 1) radius to be

a0 =
2�

αmec
= 1.1 · 10−10 m .

The range of the weak force may be estimated from Heisenberg’s uncer-
tainty relation:

R ≈ �

MWc
= 2.5 · 10−3 fm.

At this separation the weak and electromagnetic couplings are of the same
order of magnitude. The masses of the two particles, whose bound state
would have the Bohr radius R, would then be

M ≈ 2�

αRc
≈ 2 · 104 GeV/c2.

This is equivalent to the mass of 4 · 107 electrons or 2 · 104 protons. This
vividly shows just how weak the weak force is.

2. From (18.1) the transition probability obeys 1/τ ∝ E3
γ |〈rfi〉|2. If m is the

reduced mass of the atomic system, we have |〈rfi〉| ∝ 1/m and Eγ ∝ m.
1/τ = m/me · 1/τH implies τ = τH/940 for protonium.

3. The transition frequency in positronium fe+e− is given by

fe+e−

fH
=

7
4
ge
gp

mp

me

|ψ(0)|2e+e−

|ψ(0)|2H
Using (13.4) one finds |ψ(0)|2 ∝ m3

red = [(m1 ·m2)/(m1 +m2)]3. One so
obtains fe+e− = 204.5 GHz. One can analogously find fμ+e− = 4.579 GHz.
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The deviations from the measured values (0.5 % and 2.6 % respectively)
are due to higher order QED corrections to the level splitting. These are
suppressed by a factor of the order α ≈ 0.007.

4. a) The average decay length is s = vτlab = cβγτ where γ = EB/mBc
2 =

0.5mΥ /mB and βγ =
√
γ2 − 1. One thus obtains s = 0.028 mm.

b) From 0.2mm = cβγτ = τ · |pB|/mB we obtain |pB| = 2.3 GeV/c.
c) From the assumption, mB = 5.29GeV/c2 = mΥ /2, the B-mesons do

not have any momentum in the centre of mass frame. In the laboratory
frame, |pB| = 2.3 GeV/c and thus |pΥ | = 2|pB|. We obtain from this
EΥ =

√
m2

Υ c
4 + p2

Υ c
4 = 11.6 GeV.

d) From four-momentum conservation pΥ = pe+ + pe− we obtain (setting
me = 0) EΥ = Ee+ + Ee− and pΥ c = Ee+ + Ee− from this we get
Ee+ = 8.12GeV and Ee− = 3.44GeV (or vice-versa).

Chapter 14

1. Angular momentum conservation requires � = 1, since pions are spin 0. In
the (� = 1) state, the wave function is antisymmetric, but two identical
bosons must have a totally symmetric wave function.

2. The branch in the denominator is Cabibbo-suppressed and from (10.21)
we thus expect: R ≈ 20.

3. a) From the decay law N(t) = N0 e−t/τ we obtain the fraction of the
decaying particles to be F = (N0−N)/N0 = 1−e−t/τ . In the laboratory
frame we have tlab = d/(βc) and τ lab = γτ∗, where τ∗ is the usual
lifetime in the rest frame of the particle. We thus obtain

F = 1 − exp
(
− d

βcγτ∗

)
= 1 − exp

⎛

⎝− d
√

1 − m2c4

E2 c E
mc2 τ∗

⎞

⎠ ,

and from this we find Fπ = 0.9% und FK = 6.7%.
b) From four momentum conservation we obtain, e.g., for pion decay p2μ =

(pπ − pν)2 and upon solving for the neutrino energy get

Eν =
m2

πc
4 −m2

μc
4

2(Eπ − |pπ|c cos θ)
.

At cos θ = 1 we have maximal Eν , while for cos θ = −1 it is minimal.
We can so obtain Emax

ν ≈ 87.5 GeV and Emin
ν ≈ 0 GeV (more precisely:

11 keV) in pion decay. In the case of kaon decay, we obtain Emax
ν ≈

191 GeV and Emin
ν ≈ 0 GeV (more precisely: 291 keV).
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Chapter 15

1. b) All of the neutral mesons made out of u- and d-quarks (and similarly
the ss (φ) meson) are very short lived; cτ < 100 nm. The dilatation
factor γ that they would need to have in order to traverse a distance of
several centimetres in the laboratory frame is simply not available at
these beam energies. Since mesons with heavy quarks (c, b) cannot be
produced, as not enough energy is available, the only possible mesonic
decay candidate is the K0

S. Similarly the only baryons that come into
question are the Λ0 and the Λ0. The primary decay modes of these
particles are K0

S → π+π−, Λ0 → pπ− and Λ0 → pπ+.
c) We have for the mass MX of the decayed particle from (15.1)

M2
X = m2

+ +m2
− + 2

√
p2

+/c
2 +m2

+

√
p2
−/c

2 +m2
−

− 2
c2 |p+||p−| cos<) (p+,p−)

where the masses and momenta of the decay products are denoted
by m± and p± respectively. Consider the first pair of decay products:
the hypothesis that we have a K0

S → π+π− (m± = mπ±) decay leads
to MX = 0.32 GeV/c2 which is inconsistent with the true K0 mass
(0.498 GeV/c2). The hypothesis Λ0 → pπ− (m+ = mp, m− = mπ−)
leads to MX = 1.11 GeV/c2 which is in very good agreement with the
mass of the Λ0. The Λ0 possibility can, as with the K0 hypothesis, be
confidently excluded. Considering the second pair of decay particles
we similarly find: K0 hypothesis, MX = 0.49 GeV/c2; Λ0 hypothesis,
MX = 2.0 GeV/c2; the Λ0 hypothesis also leads to a contradiction. In
this case we are dealing with the decay of a K0.

d) Conservation of strangeness in the strong interaction means that as
well as the Λ0, which is made up of a uds quark combination, a fur-
ther hadron with an s-quark must be produced. The observed K0

S decay
means that this was a K0 (sd).1 Charge and baryon number conserva-
tion now combine to imply that the most likely total reaction was

p + p → K0 + Λ0 + p + π+ .

We cannot, however, exclude additional, unobserved neutral particles
or very short lived intermediate states (such as a Δ++).

2. Let us consider the positively charged Σ particles |Σ+〉 = |u↑u↑s↓〉 and
|Σ+∗〉 = |u↑u↑s↑〉. Since the spins of the two u-quarks are parallel, we
have

3∑

i,j=1
i<j

σi · σj

mimj
=

σu · σu

m2
u

+ 2
σu · σs

mums
.

1 Both the K0 and the K0 can decay as K0
S (cf. Sec. 14.4).
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We first inspect

2σu · σs =
3∑

i,j=1
i<j

σi · σj − σu · σu .

We already know the first term on the r.h.s. from (15.10). It is −3 for
S = 1/2 baryons and +3 for S = 3/2 baryons. The second term is +1.
This yields

ΔMss =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
9

�
3

c3
παs |ψ(0)|2

(
1

m2
u,d

− 4
mu,dms

)

for the Σ states ,

4
9

�
3

c3
παs |ψ(0)|2

(
1

m2
u,d

+
2

mu,dms

)

for the Σ∗ states .

The average mass difference between the Σ and Σ∗ baryons is about 200
MeV/c2. With the mass formula (15.12) we have

MΣ∗ −MΣ = ΔMss(Σ∗) −ΔMss(Σ) = 4
9

�
3

c3 παs |ψ(0)|2 6
mu,dms

≈ 200MeV/c2 ,

where we assume that ψ(0) is the same for both states. We thus obtain
(mu,d = 363 MeV/c2, ms = 538 MeV/c2)

αs |ψ(0)|2 = 0.61 fm−3 .

Inserting a hydrogen atom-type wave function, |ψ(0)|2 = 3/4πr3, and
αs ≈ 1, yields a rough approximation for the average separation r of the
quarks in such baryons: r ≈ 0.8 fm.

3. The Λ is an isospin singlet (I=0). To a first approximation the decay is
just the quark transition s → u, which changes the isospin by 1/2. Thus the
pion-nucleon system must be a I=1/2 state. Charge conservation implies
that the third component is IN3 + Iπ

3 = −1/2. The matrix elements of the
decay of the Λ0 are proportional to the squares of the Clebsch-Gordan
coefficients:

σ(Λ0 → π− + p)
σ(Λ0 → π0 + n)

=
(1 1

2 −1 + 1
2 | 1

2 − 1
2 )2

(1 1
2 0 − 1

2 | 1
2 − 1

2 )2
=

(−
√

2/3)2

(
√

1/3)2
= 2.

4. The probability that a muon be captured from a 1s state into a 12C nucleus
is

1
τμC

=
2π
�

∣
∣
∣
∣
∣
〈
12B eipνr

∣
∣
∑

i

gAσiI−
∣
∣12Cψμ(r)

〉
(r=0)

∣
∣
∣
∣
∣

2 ∫
p2νdpνdΩ

(2π�)3dEν
.
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Since carbon has JP = 0+ and boron JP = 1+, this is a purely axial
vector transition. We further have dpν/dEν = 1/c,

∫
dΩ = 4π and

|ψμ(r=0)|2 = 3/(4πr3μ). The radius of the 12C muonic atomic is found to
be

rμ =
aBohrme

Zmμ
= 42.3 fm ,

and the energy is

Eν = mμc
2 − 13.3MeV ≈ 90MeV .

This yields the absorption probability

1
τμC

=
2π
�c

4πcE2
ν

(2π)3(�c)3

∣
∣
∣
∣
∣
〈
12B

∣
∣
∑

i

gAσiI−
∣
∣12C

〉
∣
∣
∣
∣
∣

2

|ψ(0)|2 .

These are all known quantities except for the matrix element. This may
be extracted from the known lifetime of the 12B → 12C + e− + νe decay:

1
τ12B

=
1

2π3�7c6

∣
∣
∣
∣
∣
〈
12C

∣
∣
∑

i

gAσiI+
∣
∣12B

〉
∣
∣
∣
∣
∣

2

E5
max .

We thus finally obtain

1
τμC

≈ 1.5 · 104 s−1 .

The total decay probability of the muon decay in 12C is the sum of the
probabilities of the free muon decaying and of its being captured by the
nucleus:

1
τ

=
1
τμ

+
1
τμC

.

5. These branching ratios depend primarily upon two things: a) the phase
space and b) the fact that the strangeness changes in the first case
(Cabibbo suppression) but not in the latter. A rough estimate may be
obtained by assuming that the matrix elements are, apart from Cabibbo
suppression, identical. From (10.21) and (15.49) one finds

W (Σ− → n)
W (Σ− → Λ0)

≈ sin2 θC
cos2 θC

·
(
E1

E2

)5

=
1
20

·
(

257 MeV
81 MeV

)5

≈ 16 .

This agreement is not bad at all, considering the coarseness of our approx-
imation. In the decay Σ+ → n + e+ + νe we would need two quarks to
change their flavours; (suu) → (ddu).
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6. a) Baryon number conservation means that baryons can neither be anni-
hilated nor created but rather only transformed into each other. Hence
only the relative parities of the baryons have any physical meaning.

b) The deuteron is a ground state p-n system, i.e., � = 0. Its parity is
therefore ηd = ηpηn(−1)0 = +1. Since quarks have zero orbital angular
momentum in nucleons, the quark intrinsic parities must be positive.

c) The downwards cascade of pions into the ground state may be seen
from the characteristic X rays.

d) Since the deuteron has spin 1, the d-π system is in a state with total
angular momentum J = 1. The two final state neutrons are identical
fermions and so must have an antisymmetric spin-orbit wave function.
Only 3P1 of the four possible states with J = 1, 3S1, 1P1, 3P1 and 3D1

fulfills this requirement.
e) From �nn = 1, we see that the pion parity must be ηπ = η2

n(−1)1/ηd =
−1.

f) The number of quarks of each individual flavour (Nq−Nq) is sepa-
rately conserved in parity conserving interactions. The quark pari-
ties can therefore be separately chosen. One could thus choose, e.g.,
ηu = −1, ηd = +1, giving the proton a positive and the neutron a neg-
ative parity. The deuteron would then have a negative parity and the
charged pions a positive one. The π0 as a uu/dd mixed state would
though keep its negative parity. Particles like (π+, π0, π−) or (p,n)
although inside the same isospin multiplets would then have distinct
parities – a rather unhelpful convention. For ηn = ηp = −1, on the other
hand, isospin symmetry would be fulfilled. The parities of nucleons and
odd nuclei would then be the opposite of the standard convention, while
those of mesons and even nuclei would be unchanged. The Λ and Λc

parities are just those of the s- and c-quarks and may be chosen to be
positive.

Chapter 16

1. The ranges, λ ≈ �c/mc2, are: 1.4 fm (1π), 0.7 fm (2π), 0.3 fm (
, ω). Two
pion exchange with vacuum quantum numbers, JP = 0+, I = 0, generates
a scalar potential which is responsible for nuclear binding. Because of its
negative parity, the pion is emitted with an angular momentum, � = 1.
The spin dependence of this component of the nuclear force is determined
by this. Similar properties hold for the 
 and ω. The isospin dependence
is determined by the isospin of the exchange particle; I = 1 for the π and

 and I = 0 for the ω. Since isospin is conserved in the strong interac-
tion, the isospin of interacting particles is coupled, just as is the case with
angular momentum.

2. Taking (16.1), (16.2) and (16.6) into account we obtain
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σ = 4π
( sin kb

k

)2

.

At low energies, where the � = 0 partial wave dominates, we obtain in the
k → 0 limit, the total cross-section, σ = 4πb2.

Chapter 17

1. At constant entropy S the pressure obeys

p = −
(
∂U

∂V

)

S

,

where V is the volume and U is the internal energy of the system. In the
Fermi gas model we have from (17.9):

U =
3
5
AEF and hence p = −3

5
A
∂EF

∂V
.

From (17.3) we find for N = Z = A/2:

A = 2
V p3F

3π2�3
= 2

V (2MEF)3/2

3π2�3
=⇒ ∂EF

∂V
= −2EF

3V
.

The Fermi pressure is then

p =
2A
5V
EF =

2
5

NEF ,

where 
N is the nucleon density. This implies for 
N = 0.17 nucleons/fm3

and EF ≈ 33 MeV

p = 2.2 MeV/fm3 = 3.6 · 1027 bar.

2. a) We only consider the odd nucleons. The even ones are all paired off in
the ground state. The first excited state is produced either by (I) the
excitation of the unpaired nucleon into the next subshell or (II) by the
pairing of this nucleon with another which is excited from a lower lying
subshell.

7
3Li 23

11Na 33
16S

41
21Sc 83

36Kr 93
41Nb

Ground state 1p1
3/2 1d3

5/2 1d1
3/2 1f17/2 1g−3

9/2 1g1
9/2

Excited (I) 1p1
1/2 2s11/2 (1f17/2) (2p1

3/2) (1g1
7/2) (1g1

7/2)

Excited (II) (1s−1
1/2) 1p−1

1/2 2s−1
1/2 1d−1

3/2 2p−1
1/2 2p−1

1/2

JP
0 experiment 3/2− 3/2+ 3/2+ 7/2− 9/2+ 9/2+

JP
0 model 3/2− 5/2+ 3/2+ 7/2− 9/2+ 9/2+

JP
1 experiment 1/2− 5/2+ 1/2+ 3/2+ 7/2+ 1/2−

JP
1 case (I) 1/2− 1/2+ (7/2−) (3/2−) (7/2+) (7/2+)

JP
1 case (II) (1/2+) 1/2− 1/2+ 3/2+ 1/2− 1/2−
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Those states whose excitation would be beyond a “magic” boundary
are shown here in brackets. This requires a lot of energy and so is only
to be expected for higher excitations. As one sees, the predictive powers
of the shell model are good for those nuclei where the unfilled subshell
is only occupied by a single nucleon.

b) The (p-1p1
3/2; n-1p1

3/2) in 6
3Li implies JP = 0+, 1+, 2+, 3+. 40

19K has from
(p-1d−1

3/2; n-1f 1
7/2) a possible coupling to 2−, 3−, 4−, 5−.

3. a) An 17O nucleus may be viewed as being an 16O nucleus with an ad-
ditional neutron in the 1f5/2 shell. The energy of this level is thus
B(16O) − B(17O). The 1p1/2 shell is correspondingly at B(15O) −
B(16O). The gap between the shells is thus

E(1f5/2) − E(1p1/2) = 2B(16O) −B(15O) −B(17O) = 11.5MeV .

b) One would expect the lowest excitation level with the “right” quantum
numbers to be produced by exciting a nucleon from the topmost, occu-
pied shell into the one above. For 16O this would be the JP = 3− state,
which is at 6.13 MeV, and could be interpreted as (1p−1

1/2, 1d5/2). The
excitation energy is, however, significantly smaller than the theoretical
result of 11.5 MeV. It seems that collective effects (state mixing) are
making themselves felt. This is confirmed by the octupole radiation
transition probability, which is an order of magnitude above what one
would expect for a single particle excitation.

c) The 1/2+ quantum numbers make it natural to interpret the first ex-
cited state of 17O as 2s1/2. The excitation energy is then the gap be-
tween the shells.

d) Assuming (more than a little naively) that the nuclei are homogenous
spheres with identical radii, one finds from (2.11) that the difference
in the binding energies implies the radius is (3/5) · 16�αc/3.54 MeV =
3.90 fm, which is much larger than the value of 3.1 fm, which follows
from (5.56). In the shell model one may interpret each of these nuclei
as an 16O nucleus with an additional nucleon. The valence nucleon in
the d5/2 shell thus has a larger radius than one would expect from the
above simple formula which does not take shell effects into account.

e) The larger Coulomb repulsion means that the potential well felt by
the protons in 17F is shallower than that of the neutrons in 17O. As
a result the wave function of the excited, “additional” proton in 17F
is more spread out than that of the equivalent “additional” neutron
in 17O and the nuclear force felt by the neutron is stronger than that
acting upon the proton. This difference is negligible for the ground state
since the nucleon is more strongly bound.

4. At the upper edge of the closed shells which correspond to the magic
numbers 50 and 82 we find the closely adjacent 2p1/2, 1g9/2 and the 2d3/2,
1h11/2, 3s1/2 levels respectively. It is thus natural that for nuclei with
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nucleon numbers just below 50 or 82 the transition between the ground
state and the first excited state is a single particle transition (g9/2 ↔ p1/2

andr h11/2 ↔ d3/2, s1/2 respectively). Such processes are 5th order (M4 or
E5) and hence extremely unlikely [Go51].

5. a) The spin of the state is given by the combination of the unpaired nu-
cleons which are in the (p-1f7/2, n-1f7/2) state.

b) The nuclear magnetic moment is just the sum of the magnetic moments
of the neutron in the f7/2 shell −1.91 μN and of the proton in the f7/2

shell +5.58 μN. From (17.36) we would expect a g factor of 1.1.

6. a) In the de-excitation i → f of an Sm nucleus at rest the atom receives
a recoil energy of p2

Sm/2M where |pSm| = |pγ | ≈ (Ei − Ef )/c. In the
case at hand this is 3.3 eV. The same amount of energy is lost when
the photon is absorbed by another Sm nucleus.

b) If we set the matrix element in (18.1) to one, this implies a lifetime
of τ = 0.008 ps, which is equivalent to Γ = 80 meV. In actual mea-
surements one finds τ = 0.03 ps, i.e., Γ = 20 meV [Le78], which is
of a similar size. Since the width of the state is much smaller than
the energy shift of 2 · 3.3 eV, no absorption can take place. Thermal
motion will change |pSm| by roughly ±

√
M · kT . At room temperature

this corresponds to smearing the energy by ±0.35 eV, which is also
insufficient.

c) If the Sm atom emits a neutrino before the deexcitation, then |pSm| is
changed by ±|pν | = ±Eν/c. If the emission directions of the neutrino
and of the photon are opposite to each other, then the energy of the
radiated photon is 3.12 eV larger than the excitation energy Ei − Ef .
This corresponds to the classical Doppler effect. In this case resonant
fluorescence is possible for the γ radiation. The momentum direction of
the neutrino can be determined in this fashion (for details, see [Bo72]).

7. The three lowest proton shells in the 14O nucleus, the 1s1/2, 1p3/2 and
1p1/2, are fully occupied as are the two lowest neutron shells. The 1p1/2

shell is, however, empty (sketched on p. 273). Thus one of the two valence
nucleons (one of the protons in their 1p1/2 shell) can transform into a
neutron at the equivalent level and with the same wave function (super
allowed β-decay). We thus have

∫
ψ∗nψp = 1. This is a 0+→ 0+ transition,

i.e., a pure Fermi decay. Each of the two protons contributes a term to the
matrix element equal to the vector part of (15.39). The total is therefore
|Mfi|2 = 2g2V/V

2. Equation (15.47) now becomes

ln 2
t1/2

=
1
τ

=
m5

ec
4

2π3�7
· 2g2V · f(E0) .

Using the vectorial coupling (15.56) one finds the half-life is 70.373 s –
which is remarkably close to the experimental value. Note: the quantum
numbers and definite shell structure here means that this is one of the few
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cases where a nuclear β-decay can be calculated exactly. In practice this
decay is used to determine the strength of the vectorial coupling.

Chapter 18

1. a) In the collective model of giant resonances we consider Z protons and
N neutrons whose mutual vibrations are described by a harmonic os-
cillator. The Hamiltonian may be written as

H =
p2

2m
+
mω2

2
x2 where �ω = 80A−1/3 MeV,

and m = A/2MN is the reduced mass. The solution of the Schrödinger
equation yields the lowest lying oscillator states [Sc95]

ψ0 =
1

4
√
π
√
x0

· e−(x/x0)
2/2 where x0 =

√
�/mω,

ψ1 =
1

4
√
π
√
x0

·
√

2
( x

x0

)
e−(x/x0)

2/2.

The average deviation is

x01 := 〈ψ0|x|ψ1〉 =
√

2√
π
x0

∫ ( x

x0

)2

e−(x/x0)
2
d

x

x0
=

√
2√
π
x0 .

For 40Ca we have x0 = 0.3 fm and x01 = 0.24 fm.
b) The matrix element is Zx01. Its square is therefore 23 fm2.
c) The single particle excitations have about half the energy of the giant

resonance, i.e., �ω ≈ 40A−1/3MeV. The reduced mass in this case is
approximately the nucleon mass, since the nucleon moves in the mean
field of the heavy nucleus. This increases x0, and thus x01, by a factor
of

√
40. The 24 nucleons in the outermost shell each contribute to the

square of the matrix element with an effective charge e/2. The square
of the matrix element is so seen to be 27.6fm2. The agreement with the
result of b), i.e., the model where the protons and neutrons oscillate
collectively, is very good.

2. See Sec. 17.4 (17.38ff) and (18.49f).
From

δ =
a− b
〈R〉 , 〈R〉 = ab2

1/3
.

and the nucleon density, which in the nucleus is roughly 
N ≈
0.17 nucleons/fm3, it follows that a ≈ 8 fm, b ≈ 6 fm.
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3. The Fermi velocity is vF = pF/
√
M2

N + p2F/c2 = 0.26 c. The angular ve-
locity is

ω =
|L|
Θ

≈ 60�

AMN(a2 + b2)2/5
= 0.95 · 1021 s−1 ,

where a = 2b = 3
√

4R, and we have employed the value of R from (5.56).
The speed is v = a · ω and is about 0.03 c or around 12 % of the Fermi
velocity. The high rotational velocity causes a Coriolis force which is re-
sponsible for breaking up the nucleon pairs.

Chapter 19

1. a) In the reaction 4p → α+e+ +2νe, 26.72MeV of energy is released. The
neutrinos carry off 0.52MeV, and so 26.2MeV remains to heat up the
sun. The number of hydrogen atoms which are converted into helium
every second is:

Ṅp = 4 · 4 · 1026 W
26.2 × 1.6 · 10−13 Ws

≈ 0.4 · 1039 atoms/s .

b) 0.4 · 1010 kg/s
c) ≈ 7%
d) ≈ 130 terrestrial masses
e) Nuclear reactions take place in the interior of the sun, primarily at

radii r < R�/4. By burning off 7 % of the hydrogen the helium concen-
tration in the interior of the sun is increased by about 50 %. Doubling
this concentration means that hydrogen burning is no longer efficient:
helium burning starts up and the sun swells into a red giant.

2. a) Two neutrinos are produced for every 4He nucleus created

Φν =
Ṅν

4πa2
=

2 · Ė�
BHe · 4πa2

= 5.9 · 1010 cm−2s−1 .

b) The number of 71Ga nuclei is found to be

N71Ga =
total mass of gallium

average mass per atom
· proportion of 71Ga

=
3 · 104 kg

(0.40 · 71 + 0.60 · 69) · 931.5 · 1.6 · 10−13J/c2
· 0.40

= 1.0 · 1029 ,

and from this we can find the reaction rate:

ṄReaktion = N71Ga · σνGe · Φν · ε
= 1.0 · 1029 · 2.5 · 10−45cm2 · 5.9 · 1010cm−2s−1 · 0.5
= 0.7/day .
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Since N(t) = Ṅreactionτ(1− e−t/τ ) we expect 8 Ge atoms after 3 weeks
and after a very long time we would expect to have 11 atoms.
Note: The cross-section depends strongly upon the energy. The value
quoted is an average weighted according to the energy spectrum of solar
neutrinos.

3. a) The number of neutrons in the neutron star is Nn = 1.8 · 1057. The
energy released by fusing Nn protons into 56Fe is 2.6 · 1045 J.

b) We neglect the gravitational energy of the iron core in the original star,
(since R � 10 km). Thus the energy released during the implosion is
the gravitational energy of the neutron star minus the energy needed
to transform the iron into free neutrons (this last is the energy which
was originally released during the fusion of hydrogen into iron):

EImplosion ≈ 3GM2

5R
− 2.6 · 1045 J = 3.3 · 1046 J.

The energy released via the implosion during the supernova explosion is
more than ten times larger than the fusion energy. Although only about
20 . . . 50% of the matter of the original star ends up in the neutron
star, the fusion energy released during the entire lifetime of the star is
slightly less than the energy released in the supernova explosion.

c) Most of the energy is radiated off as neutrino emission:

e+ + e− → νe + νe, νμ + νμ, ντ + ντ .

The positrons in this process are generated in the reaction:

p + νe → e+ + n.

Neutrinos can, however, also be directly produced in:

p + e− → n + νe.

The last two processes are responsible for the transformation of the
protons in 56Fe.
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[Kö89] L. Köpke, N. Wermes: Phys. Rep. 174 (1989) 67
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